精英家教网 > 高中数学 > 题目详情
14.求与直线x=-2和圆A:(x-3)2+y2=1都相切的动圆圆心P的轨迹方程.

分析 动圆P与直线x=-2相切,且与定圆A:(x-3)2+y2=1,当与定圆A:(x-3)2+y2=1外切时,可以看到动圆的圆心P到A(3,0)的距离与到直线x=-3的距离相等,由抛物线的定义知,点P的轨迹是抛物线,由此求得轨迹方程;当与定圆A:(x-3)2+y2=1内切时,设出P的坐标,由题意列式,化简可得答案.

解答 解:由题意,当动圆P与直线x=-2相切,且与定圆A:(x-3)2+y2=1外切时,
∴动点P到A(3,0)的距离与到直线x=-3的距离相等,
由抛物线的定义知,点P的轨迹是以A(3,0)为焦点,以直线x=-3为准线的抛物线,
故所求A的轨迹方程为y2=12x;
当动圆P与直线x=-2相切,且与定圆A:(x-3)2+y2=1内切时,如图:
设P(x,y),则|x+2|=$\sqrt{(x-3)^{2}+{y}^{2}}+1$,
即|x+2|-1=$\sqrt{(x-3)^{2}+{y}^{2}}$,两边平方可得:x2+4x+4-2|x+2|+1=x2-6x+9+y2
即y2=10x-4-2|x+4|,
∴圆心P的轨迹为$\left\{\begin{array}{l}{{y}^{2}=8x-12,x≥-4}\\{{y}^{2}=12x+4,x<-4}\end{array}\right.$.

点评 本题考查轨迹方程,熟记抛物线的定义是求解本题的关键,由定义法求轨迹的方程是近几年高考的热点,要注意掌握高中数学中所学的几个重要定义,如圆锥曲线的定义,圆的定义等,该题是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知M为三角形ABC内一点,且满足2$\overrightarrow{MA}$+$\overrightarrow{MB}$+$\overrightarrow{MC}$=$\overrightarrow{0}$,若∠AMB=$\frac{3π}{4}$,∠AMC=$\frac{2π}{3}$,|$\overrightarrow{MB}$|=2$\sqrt{3}$,则|$\overrightarrow{MC}$|=2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知角α的终边在如图所示的阴影区域内.
(1)用弧度制表示角α的集合;
(2)判定$\frac{α}{2}$+$\frac{7π}{12}$是第几象限角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,已知⊙O′:x2+(y+$\frac{\sqrt{6}}{3}$m)2=4m2(m>0)及点M(0,$\frac{\sqrt{6}}{3}$m),在⊙O′上任取一点M′,连接MM′,并作MM′的中垂线l,设l与直线O′M′交于点P,若点M′取遍⊙O′上的点.
(1)求点P的轨迹C的方程.
(2)设直线l:y=k(x+1)(k≠0)与轨迹C相交于A,B两个不同的点,与x轴相交于点D,若$\overrightarrow{AD}$=2$\overrightarrow{DB}$,求△OAB的面积取得最大值时轨迹C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.集合A={m+$\sqrt{3}$n|m2-3n2=1,且m,n∈Z},试求一个属于A的元素a,再求和$\frac{a}{2+\sqrt{3}}$,并判断它们是否属于A?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{4}$=1(a>0)的离心率为$\sqrt{3}$,则a=$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.若x>0,y>0,且x+y>2,
(1)$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$,$\left\{\begin{array}{l}{x=\frac{1}{2}}\\{y=3}\end{array}\right.$,$\left\{\begin{array}{l}{x=\sqrt{3}}\\{y=\sqrt{2}}\end{array}\right.$时,分别比较$\frac{1+y}{x}$和$\frac{1+x}{y}$与2的大小关系;
(2)依据(1)得出的结论,归纳提出一个满足条件x、y都成立的命题并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列命题:①已知f(x)在[a,b]上连续,且${∫}_{a}^{b}$f(x)dx>0,则f(x)>0;②应用微积分基本定理有${∫}_{1}^{2}$$\frac{1}{x}$dx=F(2)-F(1),则F(x)=ln(-x);③${∫}_{-\frac{π}{2}}^{\frac{π}{2}}$cosxdx=2${∫}_{0}^{\frac{π}{2}}$cosxdx;④${∫}_{0}^{2π}$|sinx|dx=4.其中正确的是(  )
A.①②③④B.③④C.②③④D.②③

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.对于给定的正数K,定义函${f_K}(x)=\left\{\begin{array}{l}f(x),f(x)≤K\\ K,f(x)>K\end{array}\right.$.已知函数$f(x)={(\frac{1}{3})^{{x^2}-4x}}(0≤x<5)$,对其定义域内的任意x,恒有fk(x)=f(x),则(  )
A.K的最小值为$\frac{1}{243}$B.K的最大值为$\frac{1}{243}$C.K的最小值为81D.K的最大值为81

查看答案和解析>>

同步练习册答案