精英家教网 > 高中数学 > 题目详情
9.集合A={m+$\sqrt{3}$n|m2-3n2=1,且m,n∈Z},试求一个属于A的元素a,再求和$\frac{a}{2+\sqrt{3}}$,并判断它们是否属于A?

分析 解:若a∈A,则a=m+n$\sqrt{3}$且m2-3n2=1,m,n∈Z,进而得到$\frac{1}{a}$,$\frac{a}{2+\sqrt{3}}$均满足集合A的性质,进而得到结论;

解答 解:若a∈A,则a=m+n$\sqrt{3}$且m2-3n2=1,m,n∈Z,
则$\frac{1}{a}$=$\frac{1}{m+n\sqrt{3}}$=$\frac{m-n\sqrt{3}}{{m}^{2}-3{n}^{2}}$=m-n$\sqrt{3}$=m+(-n)$\sqrt{3}$且m2-3(-n)2=1,m,-n∈Z,
故$\frac{1}{a}$∈A,
则$\frac{a}{2+\sqrt{3}}$=(2-$\sqrt{3}$)(m+n$\sqrt{3}$)=(2m-3n)+(2n-m)$\sqrt{3}$,
此时(2m-3n)2-3(2n-m)2=m2-3n2=1,
故$\frac{a}{2+\sqrt{3}}$∈A;

点评 本题考查的知识点是集合与元素之间的关系,对勾函数的单调性,是集合,函数的综合应用,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.设向量$\overrightarrow{a}$=(2,x-1),$\overrightarrow{b}$=(x+1,4),则“x=3”是“$\overrightarrow{a}$∥$\overrightarrow{b}$”的(  )
A.既不充分也不必要条件B.必要而不充分条件
C.充分必要条件D.充分而不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知sinα=-$\frac{3}{5}$,α∈($\frac{3}{2}π,2π$),则tanα等于(  )
A.-$\frac{4}{3}$B.$\frac{4}{3}$C.$-\frac{3}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设数列{an}的首项为1,前n项和为Sn,且Sn+1=n2+an+1(n∈N*).
(1)求数列{an}的通项公式;
(2)设bn=an•2${\;}^{{a}_{n}}$,Tn是数列{bn}的前n项和,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.将函数y=sin2x的图象向右平移$\frac{π}{2}$个单位长度,所得图象对应的函数是(  )
A.奇函数B.偶函数
C.既是奇函数又是偶函数D.非奇非偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求与直线x=-2和圆A:(x-3)2+y2=1都相切的动圆圆心P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.用诱导公式求下列三角函数值(可用计算器):
(1)cos$\frac{65}{6}$π;             
(2)sin(-$\frac{31}{4}π$);           
(3)cos(-1182°13′);
(4)sin670°39′;         
(5)tan(-$\frac{26π}{3}$);           
(6)tan580°21′.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知等差数列{an},公差d>0,前n项和为Sn,且满足a2a3=45,a1+a4=14.
(1)求数列{an}的通项公式及前n项和Sn
(2)设${b_n}=\frac{S_n}{{n-\frac{1}{2}}}$,
①求证{bn}是等差数列.
②求数列$\left\{{\frac{1}{{{b_n}•{b_{n+1}}}}}\right\}$的前n项和Tn
③求$\lim_{n→∞}{T_n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.给定函数①$y={x^{\frac{1}{2}}}$,②$y=x+\frac{1}{x}$,③y=|x-1|,④y=2x+1,其中在区间(0,1)上单调递减的函数序号是(  )
A.①②B.②③C.③④D.①④

查看答案和解析>>

同步练习册答案