分析 解:若a∈A,则a=m+n$\sqrt{3}$且m2-3n2=1,m,n∈Z,进而得到$\frac{1}{a}$,$\frac{a}{2+\sqrt{3}}$均满足集合A的性质,进而得到结论;
解答 解:若a∈A,则a=m+n$\sqrt{3}$且m2-3n2=1,m,n∈Z,
则$\frac{1}{a}$=$\frac{1}{m+n\sqrt{3}}$=$\frac{m-n\sqrt{3}}{{m}^{2}-3{n}^{2}}$=m-n$\sqrt{3}$=m+(-n)$\sqrt{3}$且m2-3(-n)2=1,m,-n∈Z,
故$\frac{1}{a}$∈A,
则$\frac{a}{2+\sqrt{3}}$=(2-$\sqrt{3}$)(m+n$\sqrt{3}$)=(2m-3n)+(2n-m)$\sqrt{3}$,
此时(2m-3n)2-3(2n-m)2=m2-3n2=1,
故$\frac{a}{2+\sqrt{3}}$∈A;
点评 本题考查的知识点是集合与元素之间的关系,对勾函数的单调性,是集合,函数的综合应用,难度中档.
科目:高中数学 来源: 题型:选择题
| A. | 既不充分也不必要条件 | B. | 必要而不充分条件 | ||
| C. | 充分必要条件 | D. | 充分而不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{4}{3}$ | B. | $\frac{4}{3}$ | C. | $-\frac{3}{4}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 奇函数 | B. | 偶函数 | ||
| C. | 既是奇函数又是偶函数 | D. | 非奇非偶函数 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①② | B. | ②③ | C. | ③④ | D. | ①④ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com