精英家教网 > 高中数学 > 题目详情
2.已知向量$\overrightarrow{a}$=(2,1),$\overrightarrow{b}$=(1,m),且$\overrightarrow{a}⊥\overrightarrow{b}$,则实数m=-2.

分析 根据$\overrightarrow{a}$⊥$\overrightarrow{b}$时$\overrightarrow{a}$•$\overrightarrow{b}$=0,列出方程求出m的值.

解答 解:向量$\overrightarrow{a}$=(2,1),$\overrightarrow{b}$=(1,m),
且$\overrightarrow{a}⊥\overrightarrow{b}$,
∴$\overrightarrow{a}$•$\overrightarrow{b}$=2×1+m=0,
解得m=-2.
故答案为:-2.

点评 本题考查了平面向量的垂直与数量积的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.设函数f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若对任意的x∈[a,b],都有|f(x)-g(x)|≤1,则称f(x)与g(x)在[a,b]上是“密切函数”,区间[a,b]称为“密切区间”.若f(x)=lnx与g(x)=$\frac{mx-1}{x}$在[$\frac{1}{e}$,e]上是“密切函数”,则实数m的取值范围是[e-2.2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图,长方体ABCD-A1B1C1D1,AB=BC=2,AA1=$\sqrt{3}$,M为A1D1的中点,P为底面四边形ABCD内的动点,且满足PM=PC,则点P的轨迹的长度为(  )
A.$\sqrt{3}$B.3C.$\frac{2π}{3}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若复数z满足$\frac{1-z}{1+z}$=i,则|$\overline{z}$+1|的值为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.点P(0,1)到直线l:3x-4y+1=0的距离为(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知tan(α+β)=3,tan(α-β)=5,则tan2α=(  )
A.-$\frac{1}{8}$B.$\frac{1}{8}$C.-$\frac{4}{7}$D.$\frac{4}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数f(x)=Asin(ωx+φ)(A>0,-π<ω<0,φ>0)在一个周期的区间上的图象如图,则f(x)的解析式为$\sqrt{5}$sin(-$\frac{π}{8}$x+$\frac{π}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.等差数列{an}的前n项和为Sn,若S9=81,ak-4=191,Sk=10000,则k的值为100.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在△ABC中,A=30°,C=45°,则$\frac{2a+c}{2a-c}$=3+2$\sqrt{2}$.

查看答案和解析>>

同步练习册答案