分析 由函数的图象的顶点坐标求出A,由周期求出ω,由特殊点的坐标求出φ的值,可得函数的解析式.
解答 解:根据函数f(x)=Asin(ωx+φ)=-Asin(-ωx-φ)(A>0,-π<ω<0,φ>0)
在一个周期的区间上的图象,
可得A=$\sqrt{5}$,$\frac{T}{2}$=|$\frac{1}{2}•\frac{2π}{ω}$|=14-6,∴ω=-$\frac{π}{8}$.
再根据$\sqrt{5}$sin(-$\frac{π}{8}$•6-φ)=0,∴-$\frac{π}{8}$•6-φ=kπ,k∈Z,即φ=-kπ-$\frac{3π}{4}$,
∴φ=$\frac{π}{4}$,故f(x)=$\sqrt{5}$sin(-$\frac{π}{8}$x+$\frac{π}{4}$),
故答案为:$\sqrt{5}$sin(-$\frac{π}{8}$x+$\frac{π}{4}$).
点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出ω,由特殊点的坐标求出φ的值,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 2 | C. | 1 | D. | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 存在函数f(x)使得对任意的实数y,都有等式f(cosy)=cos2y成立 | |
| B. | 存在函数f(x)使得对任意的实数y,都有等式f(siny)=sin2y成立 | |
| C. | 存在函数f(x)使得对任意的实数y,都有等式f(cosy)=cos3y成立 | |
| D. | 存在函数f(x)使得对任意的实数y,都有等式f(siny)=sin3y成立 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 1 | C. | 0 | D. | -1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 6 | B. | 5 | C. | 4 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com