精英家教网 > 高中数学 > 题目详情
等比数列{an}中,已知a1=2,a4=16
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若a3,a5分别为等差数列{bn}的第3项和第5项,试求数列{bn}的通项公式及前n项和Sn
分析:(I)由a1=2,a4=16直接求出公比q再代入等比数列的通项公式即可.
(Ⅱ)利用题中条件求出b3=8,b5=32,又由数列{bn}是等差数列求出
b1=-16
d=12
.再代入求出通项公式及前n项和Sn
解答:解:(I)设{an}的公比为q
由已知得16=2q3,解得q=2
an=a1qn-1=2n
(Ⅱ)由(I)得a3=8,a5=32,则b3=8,b5=32
设{bn}的公差为d,则有
b1+2d=8
b1+4d=32

解得
b1=-16
d=12

从而bn=-16+12(n-1)=12n-28
所以数列{bn}的前n项和Sn=
n(-16+12n-28)
2
=6n2-22n
点评:本小题主要考查等差数列、等比数列等基础知识,考查运算求解能力,考查归化与转化思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

等比数列{an}中,a2=18,a4=8,则公比q等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,a1=0,an+1=
1
2-an

(Ⅰ)求数列{an}的通项公式an
(Ⅱ)设数列{an}的前n项和为Sn,证明:Sn<n-ln(n+1);
(Ⅲ)设bn=an
9
10
n,证明:对任意的正整数n、m,均有|bn-bm|<
3
5

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,a3=2,a7=32,则a5=
8
8

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,an=2×3n-1,则由此数列的奇数项所组成的新数列的前n项和为
9n-1
4
9n-1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,已知对n∈N*有a1+a2+…+an=2n-1,那么
a
2
1
+
a
2
2
+…+
a
2
n
等于(  )

查看答案和解析>>

同步练习册答案