精英家教网 > 高中数学 > 题目详情
,其中f(x)=lnx,且g(e)=.(e为自然对数的底数)
(I)求p与q的关系;
(Ⅱ)若g(x)在其定义域内为单调函数,求p的取值范围;
(Ⅲ)证明:
①f(1+x)≤x(x>-1);
(n∈N,n≥2).
【答案】分析:对于(I)求p与q的关系;因为由已知可以很容易求出函数g(x)的表达式,在把x=e代入函数得关系式,化简即可得到答案.
对于(II)若g(x)在其定义域内为单调函数,求p的取值范围;因为已知g(x)的函数表达式,可以直接求解导函数,当导函数恒大于等于0,或者恒小于等于0的时候,即单调.故可分类讨论当p=0,p>0,p<0时满足函数单调的p的值,求它们的并集即可得到答案.
对于(III)证明:①f(1+x)≤x(x>-1),可根据函数的单调性直接证明.
(n∈N,n≥2).因为由①知lnx≤x-1,又x>0,所以有,令x=n2
得到不等式..代入原不等式化简求解即可得到答案.
解答:解:(I)由题意
又g(e)=,∴
,∴
,∴p=q
(II)由(I)知:
令h(x)=px2-2x+p.要使g(x)在(0,+∞)为单调函数,只需h(x)在(0,+∞)满足:
h(x)≥0或h(x)≤0恒成立.
①p=0时,h(x)=-2x,∵x>0,∴h(x)<0,∴g'(x)=
∴g(x)在(0,+∞)单调递减,∴p=0适合题意.
②当p>0时,h(x)=px2-2x+p图象为开口向上抛物线,
称轴为x=∈(0,+∞).∴h(x)min=p-.只需p-≥0,即p≥1时h(x)≥0,g′(x)≥0,
∴g(x)在(0,+∞)单调递增,∴p≥1适合题意.
③当p<0时,h(x)=px2-2x+p图象为开口向下的抛物线,其对称轴为x=∉(0,+∞),
只需h(0)≤0,即p≤0时h(0)≤(0,+∞)恒成立.
∴g′(x)<0,∴g(x)在(0,+∞)单调递减,∴p<0适合题意.
综上①②③可得,p≥1或p≤0.
(III)证明:①即证:lnx-x+1≤0(x>0),
设k(x)=lnx-x+1,则k'(x)=
当x∈(0,1)时,k′(x)>0,∴k(x)为单调递增函数;
当x∈(1,∞)时,k′(x)<0,∴k(x)为单调递减函数;
∴x=1为k(x)的极大值点,∴k(x)≤k(1)=0.即lnx-x+1≤0,
所以lnx≤x-1得证.
②由①知lnx≤x-1,又x>0,
∵n∈N*,n≥2时,令x=n2



=
=
==
所以得证.
点评:此题主要考查函数的概念及由函数单调性证明不等式的问题,题目共有三问,涵盖知识点多,计算量大,对学生灵活性要求较高,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•绍兴模拟)已知函数f(x)=e2x-2a
x
 
2
+2e2x
,其中e为自然对数的底数.
(I)若函数f(x)在[1,2]上为单调增函数,求实数a的取值范围;
(II)设曲线y=f(x)在点P(1,f(1))处的切线为l.试问:是否存在正实数a,使得函数y=f(x)的图象被点P分割成的两部分(除点P外)完全位于切线l的两侧?若存在,请求出a满足的条件,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①半径为2,圆心角的弧度数为
1
2
的扇形的周长为5;    
②若向量
a
b
b
c
,则
a
c

③设f(x)=asin(πx+α)+bcos(πx+β),其中a,b,α,β∈R,且ab≠0,α≠kπ (k∈Z).则f(2012)+f(2013)=0.
④若直线l过点A(2,3),且垂直于向量a=(2,1),则其方程为2x+y-7=0
其中真命题的序号是
①③④
①③④

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xlnx.
(Ⅰ)若直线l过点(0,1),并且与曲线y=f(x)相切,求直线l的方程;
(Ⅱ)设函数g(x)=f(x)-a(x-1),其中a∈R,求函数g(x)在区间[1,e]上的最小值.(其中e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数数学公式,其中e为自然对数的底数.
(I)若函数f(x)在[1,2]上为单调增函数,求实数a的取值范围;
(II)设曲线y=f(x)在点P(1,f(1))处的切线为l.试问:是否存在正实数a,使得函数y=f(x)的图象被点P分割成的两部分(除点P外)完全位于切线l的两侧?若存在,请求出a满足的条件,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

  已知函数f(x)=(k为常数,e=2.71828…是自然对数的底数),曲线y=f(x)在点(l,f(l))处的切线与x轴平行.

  (Ⅰ)求k的值;

  (Ⅱ)求f(x)的单调区间;

  (Ⅲ)设g(x)=xf′(x),其中f′(x)为f(x)的导函数.证明:对任意0<x<1,g(x)<1 +e-2

查看答案和解析>>

同步练习册答案