精英家教网 > 高中数学 > 题目详情
2.设Sn是数列{an}的前n项和,且a1=-1,$\frac{{a}_{n+1}}{{S}_{n+1}}$=Sn.则数列{an}的通项公式an=$\left\{\begin{array}{l}{-1,n=1}\\{\frac{1}{n(n-1)},n≥2}\end{array}\right.$.

分析 由已知推导出{$\frac{1}{{S}_{n}}$}是首项为-1,公差为-1的等差数列,从而求出Sn=-$\frac{1}{n}$,由此能求出数列{an}的通项公式.

解答 解:Sn是数列{an}的前n项和,且a1=-1,$\frac{{a}_{n+1}}{{S}_{n+1}}$=Sn
∴Sn+1-Sn=Sn+1Sn
∴$\frac{1}{{S}_{n+1}}-\frac{1}{{S}_{n}}$=-1,$\frac{1}{{S}_{1}}$=-1,
∴{$\frac{1}{{S}_{n}}$}是首项为-1,公差为-1的等差数列,
∴$\frac{1}{{S}_{n}}$=-1+(n-1)×(-1)=-n.
∴Sn=-$\frac{1}{n}$,
n=1时,a1=S1=-1,
n≥2时,an=Sn-Sn-1=-$\frac{1}{n}$+$\frac{1}{n-1}$=$\frac{1}{n(n-1)}$.
∴an=$\left\{\begin{array}{l}{-1,n=1}\\{\frac{1}{n(n-1)},n≥2}\end{array}\right.$.
故答案为:$\left\{\begin{array}{l}{-1,n=1}\\{\frac{1}{n(n-1)},n≥2}\end{array}\right.$.

点评 本题考查数列的通项公式的求法,是中档题,解题时要认真审题,注意构造法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.若C${\;}_{n}^{2}$=C${\;}_{n-1}^{2}$+C${\;}_{n-1}^{3}$(n∈N*),则($\root{3}{x}$-$\frac{1}{2\sqrt{x}}$)n的展开式的常数项为$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知两点A(2,3),B(-4,8),直线l经过原点且A,B两点到直线1距离相等,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知$\frac{a}{b}$=$\frac{c}{d}$=$\frac{2}{3}$,且b≠d,则$\frac{a-c}{b-d}$=(  )
A.$\frac{2}{3}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知A(3,4,-1),B(-1,-4,3),C(-2,1,2),且M为AB中点,则向量$\overrightarrow{CM}$的坐标为(  )
A.(3,-1,1)B.(3,1,-1)C.(3,-1,-1)D.(3,1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,平行四边形ABCD中,∠DAB=60°,AB=2,AD=4将△CBD沿BD折起到△EBD的位置,使平面EDB⊥平面ABD
(Ⅰ)求证:AB⊥DE
(Ⅱ)求二面角B-AE-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在棱长为a的正四面体A-BCD中,M是棱AB的中点,则CM与底面BCD所成的角的正弦值是$\frac{\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知圆C的参数方程是$\left\{\begin{array}{l}x=1+cosα\\ y=2+sinα\end{array}\right.(α$为参数).
(Ⅰ)以直角坐标系的原点0为极点,x轴的正半轴为极轴建立极坐标系,写出圆C的极坐标方程;
(Ⅱ)若直线l的极坐标方程为$θ=\frac{π}{4}({ρ∈R})$,设直线l和圆C的交点为M,N,求△CMN的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设f(x)在[a,b]上的图象是一条连续不间断的曲线,且在(a,b)内可导,则下列结论中正确的是③.
①f(x)的极值点一定是最值点         ②f(x)的最值点一定是极值点
③f(x)在此区间上可能没有极值点    ④f(x)在此区间上可能没有最值点.

查看答案和解析>>

同步练习册答案