精英家教网 > 高中数学 > 题目详情
13.已知两点A(2,3),B(-4,8),直线l经过原点且A,B两点到直线1距离相等,求直线l的方程.

分析 由已知可知直线的斜率存在,设直线的方程为y=kx,利用点到直线的距离公式即可得出

解答 解:由已知可知直线的斜率存在,
设直线的方程为y=kx,化为kx-y=0,
∵A(2,3)、B(-4,8)两点到直线的距离相等,
∴$\frac{|2k-3|}{\sqrt{1{+k}^{2}}}$=$\frac{|-4k-8|}{\sqrt{1{+k}^{2}}}$,
解得k=-$\frac{11}{2}$或k=-$\frac{5}{6}$.
∴直线的方程为:y=-$\frac{11}{2}$x或y=-$\frac{5}{6}$x.
即:11x+2y=0或5x+6y=0.

点评 本题考查了点斜式、点到直线的距离公式,考查了计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知{bn}为单调递增的等差数列,b3+b8=26,b5b6=165,设数列{an}满足2a1+22a2+23a3+…+2nan=2${\;}^{{b}_{n}}$
(1)求数列{bn}的通项;
(2)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知点A(2,4),B(4,3),则$\overrightarrow{AB}$=(  )
A.(6,7)B.(2,-1)C.(-2,1)D.(7,6)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.过点A(-2,3)和B(1,15)的直线方程是4x-y+11=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.过点(3,1)作圆C:x2+y2-2x-4y-20=0的弦,其中弦长为整数的共有3条.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.若U={1,2,3,4},A={1},B⊆∁UA,写出满足条件的集合B.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若$\sqrt{4-{a}^{2}}$=$\sqrt{{a}^{2}-4}$,则a的值为(  )
A.0B.±2C.±4D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设Sn是数列{an}的前n项和,且a1=-1,$\frac{{a}_{n+1}}{{S}_{n+1}}$=Sn.则数列{an}的通项公式an=$\left\{\begin{array}{l}{-1,n=1}\\{\frac{1}{n(n-1)},n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.f(x)是定义在R上的奇函数,当x∈(0,1)时,f(x)=$\frac{{2}^{x}}{{4}^{x}+1}$.
(1)求f(x)在(-1,0)上的解析式;
(2)证明:f(x)在(0,1)上是减函数.

查看答案和解析>>

同步练习册答案