精英家教网 > 高中数学 > 题目详情
如图是一个有n层(n≥2)的六边形点阵,它的中心是一个点,算作第一层,第2层每边有2个点,第3层每边有3个点,…,第n层每边有n个点,这个点阵的点数有
3n2-3n+1
3n2-3n+1
个.
分析:由题设条件,把求这个点阵的点数问题转化为数列{an}前n项和问题,其中an是第n层点的个数,题设条件转化为a1=1,an=6n-6,由此能求出这个点阵的点数.
解答:解:由题设条件,把求这个点阵的点数问题转化为数列{an}前n项和问题,
其中an是第n层点的个数,
题设条件转化为a1=1,an=6n-6,n≥2,n∈N*
所以Sn=
[(6n-6)+(6×1-6)]×n
2
+[a1-(6×1-6)]=3n2-3n+1

故这个点阵的点数有3n2-3n+1个.
故答案为:3n2-3n+1.
点评:本题考查数列在实际问题中的应用,解题时要认真审题,仔细解答,注意总结规律,合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源:2010年广东省江门市高考数学后阶段备考指导和猜题试卷(解析版) 题型:解答题

如图是一个有n层(n≥2)的六边形点阵,它的中心是一个点,算作第一层,第2层每边有2个点,第3层每边有3个点,…,第n层每边有n个点,这个点阵的点数有    个.

查看答案和解析>>

科目:高中数学 来源:2010年广东省广州市高三综合测试数学试卷2(文科)(解析版) 题型:解答题

如图是一个有n层(n≥2)的六边形点阵,它的中心是一个点,算作第一层,第2层每边有2个点,第3层每边有3个点,…,第n层每边有n个点,这个点阵的点数有    个.

查看答案和解析>>

科目:高中数学 来源:2010年广东省广州市高三综合测试数学试卷2(理科)(解析版) 题型:解答题

如图是一个有n层(n≥2)的六边形点阵,它的中心是一个点,算作第一层,第2层每边有2个点,第3层每边有3个点,…,第n层每边有n个点,这个点阵的点数有    个.

查看答案和解析>>

科目:高中数学 来源:广东省模拟题 题型:填空题

如图是一个有n层(n≥2) 的六边形点阵。它的中心是一个点,算作第一层,第2层每边有2 个点,第3层每边有3个点,…,第n层每边有n个点,则这个点阵的点数共有(    )个。

查看答案和解析>>

同步练习册答案