精英家教网 > 高中数学 > 题目详情
如图,已知向量
OA
=
a
OB
=
b
OC
=
c
,可构成空间向量的一个基底,若
a
=(a1,a1,a3),
b
=(b1,b2,b3),
c
=(c1,c2,c3),在向量已有的运算法则的基础上,新定义一种运算a×b=(a2b3-b2a3,a3b1-a1b3,a1b2-a2b1),显然
a
×
b
的结果仍为一个向量,记作p.
(1)求证:向量
p
为平面OAB的法向量;
(2)求证:以OA,OB为边的平行四边形OADB的面积等于|
a
×
b
|;
(3)将四边形OADB按向量c平移,得到一个平行六面体OADB-CA1D1B1,是判断平行六面体的体积V与(
a
×
b
)•
c
的大小.
考点:空间向量的数量积运算
专题:空间向量及应用
分析:(1)由题意,得
p
a
p
b
,由此能证明
p
为平面OAB的法向量.
(2)设
a
b
夹角为θ,
a
b
=|
a
|•|
b
|cosθ=a1b1+a2b2+a3b3,SOABD2=(|
a
||
b
|sinθ)2,由此能证明SOABD=|
a
×
b
|.
(3)(
a
×
b
)•
c
=
OC
向量在面OAB法向量上的投影×|
p
|,
p
=
a
×
b
的几何意义是|
p
|=|
a
|•|
b
|•sin<
a
b
>,由此能求出V=|(
a
×
b
)•
c
|.
解答: (1)证明:由题意,得
p
a
=(a1a2b3-a1a3b2,a2a3b1-a1a2b3,a1b2a3-a2b1b3),
因为(a1a2b3-a1a3b2)+(a2a3b1-a1a2b3)+(a1b2a3-a2b1b3)=0,
所以
p
a

同理得
p
b

因为
a
b
,且
a
b
?平面OAB,
所以
p
为平面OAB的法向量.
(2)证明:设
a
b
夹角为θ,
a
b
=|
a
|•|
b
|cosθ=a1b1+a2b2+a3b3
SOABD2=(|
a
||
b
|sinθ)2
=|
a
|2|
b
|2(1-cos2θ)
=|
a
|2|
b
|2-|
a
|2|
b
|2cos2θ
=(
a
×
b
2
所以SOABD=|
a
×
b
|.
(3)(
a
×
b
)•
c
=
OC
向量在面OAB法向量上的投影×|
p
|,
p
=
a
×
b
的几何意义是|
p
|=|
a
|•|
b
|•sin<
a
b
>,
∴|
p
|是底面积,
∴V=|
p
|•
OC
在法向量上投影
=|(
a
×
b
)•
c
|.
点评:本题考查向量
p
为平面OAB的法向量的证明,考查以OA,OB为边的平行四边形OADB的面积等于|
a
×
b
|的证明,考查平行六面体的体积V与(
a
×
b
)•
c
的大小的判断,解题时要注意向量的数量积的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

复数z满足方程|z+
2
1+i
|=4,那么复数z在复平面内对应的点P组成的图形为(  )
A、以(1,-1)为圆心,以4为半径的圆
B、以(1,-1)为圆心,以2为半径的圆
C、以(-1,1)为圆心,以4为半径的圆
D、以(-1,1)为圆心,以2为半径的圆

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xoy中,以O为极点,x轴的正半轴为极轴建立极坐标系,
(Ⅰ)已知曲线C1的极坐标方程为ρ=6cosθ,将曲线C1的极坐标方程化为直角坐标方程;
(Ⅱ)若在平面直角坐标系xoy中,曲线C2的参数方程为
x=acosϕ
y=bsinϕ
(a>b>0,φ为参数).
已知曲线C2上的点M(1,
3
2
)及对应的参数ϕ=
π
3
.求曲线C2的直角坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正三棱柱ABC-A1B1C1体积为
9
4
,底面是边长为
3
,若P为底面ABC的中心,则PA1与平面A1B1C1所成角的大小为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD,PA⊥底面ABCD,AB∥CD,AB⊥AD,AB=AD=PA=2,CD=4,E,F分别是PC,PD的中点.
(Ⅰ) 证明:EF∥平面PAB;
(Ⅱ) 求直线AC与平面ABEF所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,AB为圆O的直径,点E、F在圆O上,AB∥EF,矩形ABCD的边BC垂直于圆O所在的平面.
(1)求证:AF⊥平面CBF;
(2)设FC的中点为M,求证:OM∥平面DAF.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法:
①命题“?x∈R,2x≤0”的否定是“?x∈R,2x>0”;
②关于x的不等式a<sin2x+
2
sin2x
恒成立,则a的取值范围是a<3;
③对于函数f(x)=
ax
1+|x|
(a∈R且a≠0),则有当a=1时,?k∈(1,+∞),使得函数g(x)=f(x)-kx在R上有三个零点;
1
0
1-x2
dx≤
e
1
1
x
dx}
其中正确的是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某厂2013年、2014年某产品的生产量分别为1000件、1050件,由于技术条件的改进,该产品的年产量逐年递增.若用函数f(x)=a•bx+c(b>0,且b≠1)模拟该产品的年生产量f(x)与年份x(x∈N*)的关系,设2013年为第一年即x=1.
(1)若b=
1
2
,试求函数f(x)的解析式;
(2)若b>1,由于生产规模的限制,估计2015年该产品的生产量不会突破1200件(即生产量≤1200件),试依此估计求出a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

用黑、蓝2种颜色给如图所示的笑脸涂色,每个图形只能涂一种颜色,则两只眼睛(即图中A、B所示的区域)涂同种颜色而鼻子和嘴巴涂不同颜色的概率为
 

查看答案和解析>>

同步练习册答案