精英家教网 > 高中数学 > 题目详情

(08年银川一中一模理)  (12分)如图已知椭圆的中心在原点,焦点在x轴上,长轴是短轴的2倍且经过点M(2,1),平行于OM的直线在y轴上的截距为m(m≠0),且交椭圆于A、B两点.

   (1)求椭圆的方程;

   (2)求m的取值范围;

   (3)求证:直线MA、MB与x轴围成一个等腰三角形。说明理由。

 

解析:(I)设椭圆方程为(a>b>0)

     ∴椭圆方程

(II) ∵直线∥DM且在y轴上的截距为m,∴y=x+m

与椭圆交于A、B两点

∴△=(2m)2-4(2m2-4)>0-2(m≠0)

(Ⅲ)设直线MA、MB斜率分别为k1,k2,则只要证:k1+k2=0

设A(x1,y1),B(x2,y2),则k1=,k2=

由x2+2mx+2m2-4=0得x1+x2=-2m,x1x2=2m2-4

而k1+k2=+= (*)

又y1=x1+m  y2=x2+m

∴(*)分子=(x1+m-1)(x2-2)+( x2+m -1)(x1-2)

=x1x2+(m-2)(x1+x2)-4(m-1)

=2m2-4+(m-2)(-m)-4(m-1)

  =0

∴k1+k2=0,证之.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(08年银川一中一模理)  (10分) 坐标系与参数方程已知圆系的方程为

x2+y2-2axCos-2aySin=0(a>0)

   (1)求圆系圆心的轨迹方程;

   (2)证明圆心轨迹与动圆相交所得的公共弦长为定值;

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年银川一中一模理)  设a≥0,b≥0,a≠b。求证:对于任意正数都有.

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年银川一中一模文) (12分)如图,在底面是正方形的四棱锥P―ABCD中,PA=AC=2,PB=PD=

   (1)证明PA⊥平面ABCD;

   (2)已知点E在PD上,且PE:ED=2:1,点F为棱PC的中点,证明BF//平面AEC。

   (3)求四面体FACD的体积;

 

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年银川一中一模文)  (12分)已知椭圆过点,且离心率

   (1)求椭圆方程;

   (2)若直线与椭圆交于不同的两点,且线段的垂直平分线过定点,求的取值范围。

查看答案和解析>>

同步练习册答案