精英家教网 > 高中数学 > 题目详情

【题目】在同一平面直角坐标系中,经过伸缩变换后,曲线变为曲线,过点且倾斜角为的直线交于不同的两点.

1)求曲线的普通方程;

2)求的中点的轨迹的参数方程(以为参数).

【答案】12为参数,.

【解析】

1)根据变换原则可得,代入曲线的方程整理可得的方程;

2)写出直线的参数方程,根据与曲线有两个不同交点可确定倾斜角的范围;利用直线参数方程中参数的几何意义和韦达定理得到,求得后,代入直线参数方程后即可得到所求的参数方程.

1)由得:,代入得:

的普通方程为.

2)由题意得:的参数方程为:为参数)

交于不同的两点,即有两个不等实根,

有两个不等实根,,解得:.

对应的参数分别为

,且满足

.

又点的坐标满足

的轨迹的参数方程为:为参数,).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】中国农业银行开始为全国农行ATM机安装刷脸取款系统.某农行营业点为调查居民对刷脸取款知识的了解情况,制作了刷脸取款知识有奖调查问卷,发放给2018年度该行的所有客户,并从参与调查且年龄(单位:岁)在[25,55]内的客户中随机抽取100名给予物质奖励,再从中选出一名客户参加幸运大抽奖.调查结果按年龄分成6组,制作成如下的频数分布表和女客户的年龄茎叶图,其中abc=2∶4∶5.

年龄/

[25,30)

[30,35)

[35,40)

[40,45)

[45,50)

[50,55]

频数/

5

a

b

c

15

25

女客户的年龄茎叶图

幸运大抽奖方案如下:客户最多有两次抽奖机会,每次抽奖的中奖率均为,第一次抽奖,若未中奖,则抽奖结束.若中奖,则通过抛掷一枚质地均匀的硬币,决定是否继续进行第二次抽奖.规定:抛出的硬币,若反面朝上,则客户获得5000元奖金,不进行第二次抽奖;若正面朝上,客户需进行第二次抽奖,且在第二次抽奖中,如果中奖,则获得奖金10000元,如果未中奖,则所获得的奖金为0元.

(1)求a,b,c的值,若分别从男、女客户中随机选取1人,求这2人的年龄均在[40,45)内的概率;

(2)若参加幸运大抽奖的客户所获奖金(单位:元)用X表示,求X的分布列与数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业生产的某种产品被检测出其中一项质量指标存在问题.该企业为了检查生产该产品的甲、乙两条流水线的生产情况,随机地从这两条流水线上生产的大量产品中各抽取50件产品作为样本,测出它们的这一项质量指标值.若该项质量指标值落在内,则为合格品,否则为不合格品.如图是甲流水线样本的频数分布表和乙流水线样本的频率分布直方图.

(1)根据频率分布直方图,估计乙流水线生产的产品该质量指标值的中位数;

(2)若将频率视为概率,某个月内甲、乙两条流水线均生产了5000件产品,则甲、乙两条流水线分别生产出不合格品约多少件?

(3)根据已知条件完成下面列联表,并回答是否有的把握认为“该企业生产的这种产品的质量指标值与甲、乙两条流水线的选择有关”?

甲流水线

乙流水线

合计

合格品

不合格品

合计

附:,其中.

临界值表:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正三角形ABE与菱形ABCD所在的平面互相垂直,,,MAB的中点,NCE的中点.

(1)求证:

(2)求证:平面ADE

(3)求点A到平面BCE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥,底面是正方形,分别是的中点.

(1)求证

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知点的坐标分别为.直线相交于点,且它们的斜率之积是.记点的轨迹为

Ⅰ)求的方程.

Ⅱ)已知直线分别交直线于点,轨迹在点处的切线与线段交于点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数其中.

(1)求过点和函数的图像相切的直线方程

(2)若对任意恒成立的取值范围

(3)若存在唯一的整数使得的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】把函数的图象向右平移一个单位,所得图象与函数的图象关于直线对称;已知偶函数满足,当时,;若函数有五个零点,则的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的左、右顶点分别为,上顶点为B,右焦点为F,已知直线的倾斜角为120°.

(1)求椭圆C的方程;

(2)P为椭圆C上不同于的一点,O为坐标原点,线段的垂直平分线交M点,过M且垂直于的直线交y轴于Q点,若,求直线的方程.

查看答案和解析>>

同步练习册答案