精英家教网 > 高中数学 > 题目详情
定义在(0,+∞)上的函数f (x),对于任意的m,n∈(0,+∞),都有f(m•n)=f(m)+f(n)成立,当x>1时,f(x)<0.(Ⅰ)计算f(1);(Ⅱ)证明f (x)在(0,+∞)上是减函数;(Ⅲ)当f(2)=-
12
时,解不等式f(x2-3x)>-1.
分析:(Ⅰ)用赋值法求f(1)的值,因为定义在(0,+∞)上的函数f (x)对于任意的m,n∈(0,+∞),满足f(m•n)=f(m)+f(n),所以只需令m=n=1,即可求出f(1)的值.
(Ⅱ)用函数单调性的定义证明,步骤是,先设所给区间上任意两个自变量x1,x2,且x1<x2,再用作差法比较f(x1),f(x2)的大小,比较时,借助f(m•n)=f(m)+f(n),把x2
x2
x1
x1
表示即可.
(Ⅲ)先根据f(2)=-
1
2
以及f(m•n)=f(m)+f(n)求出f(4)=-1,把不等式f(x2-3x)>-1化为f(x2-3x)>f(4),再利用(II)中判断的函数的单调性解不等式即可.
解答:解:(Ⅰ)∵定义在(0,+∞)上的函数f (x)对于任意的m,n∈(0,+∞),满足f(m•n)=f(m)+f(n),
∴f(1)=f(1×1)=f(1)+f(1).∴f(1)=0
证明:(II)设0<x1<x2,∵f(m•n)=f(m)+f(n)即f(m•n)-f(m)=f(n)
f(x2)-f(x1)=f(
x2
x1
x1)-f(x1)
=f(
x2
x1
)+f(x1)-f(x1)=f(
x2
x1
)

因为0<x1<x2,则
x2
x1
>1
,而当x>1时,f(x)<0,从而f(x2)<f(x1
于是f(x)在(0,+∞)上是减函数.
解:(Ⅲ)因为f(4)=f(2)+f(2)=-1,所以f(x2-3x)>f(4),
因为f(x)在(0,+∞)上是减函数,所以0<x2-3x<4,
解得-1<x<0或3<x<4,
故所求不等式的解集为{x|-1<x<0或3<x<4}.
点评:本题主要考查了赋值法求抽象函数的函数值,抽象函数的单调性的证明,以及借助函数单调性解不等式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在(0,1)上的函数f(x),对任意的m,n∈(1,+∞)且m<n时,都有f(
1
n
)-
f(
1
m
)=f(
m-n
1-mn
)
an=f(
1
n2+5n+5
)
,n∈N*,则在数列{an}中,a1+a2+…a8=(  )
A、f(
1
2
)
B、f(
1
3
)
C、f(
1
4
)
D、f(
1
5
)

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在(0,1)上的函数,且满足:①对任意x∈(0,1),恒有f(x)>0;②对任意x1,x2∈(0,1),恒有
f(x1)
f(x2)
+
f(1-x1)
f(1-x2)
≤2
,则下面关于函数f(x)判断正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•顺义区二模)已知定义在区间[0,
2
]上的函数y=f(x)的图象关于直线x=
4
对称,当x
4
时,f(x)=cosx,如果关于x的方程f(x)=a有解,记所有解的和为S,则S不可能为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

填空题
(1)已知
cos2x
sin(x+
π
4
)
=
4
3
,则sin2x的值为
1
9
1
9

(2)已知定义在区间[0,
2
]
上的函数y=f(x)的图象关于直线x=
4
对称,当x≥
4
时,f(x)=cosx,如果关于x的方程f(x)=a有四个不同的解,则实数a的取值范围为
(-1,-
2
2
)
(-1,-
2
2
)


(3)设向量
a
b
c
满足
a
+
b
+
c
=
0
(
a
-
b
)⊥
c
a
b
,若|
a
|=1
,则|
a
|2+|
b
|2+|
c
|2
的值是
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•湖州二模)定义在(0,
π
2
)上的函数f(x),f′(x)是它的导函数,且恒有f(x)<f′(x)tanx成立,则(  )

查看答案和解析>>

同步练习册答案