精英家教网 > 高中数学 > 题目详情

已知函数f(x)=数学公式,其中a>0.
(Ⅰ)若a=1,求曲线y=f(x)在点(2,f(2))处的切线方程;
(Ⅱ)若函数f(x)有三个零点,求a的取值范围.

解:(Ⅰ)当a=1时,
得到f′(x)=3x2-3x,
则f′(2)=6,
所以曲线y=f(x)在点(2,f(2))处的切线方程为:y-3=6(x-2),即y=6x-9;
(Ⅱ)f′(x)=3ax2-3x=3x(ax-1).令f′(x)=0,解得
因a>0,则
当x变化时,f′(x)、f(x)的变化情况如表:
X(-∞,0)0
F’(x)+0-0+
f(x)递增极大值递减极小值递增
又f(0)=1,
若要f(x)有三个零点,只需即可,
解得,又a>0.
因此
故所求a的取值范围为
分析:(Ⅰ)把a=1代入f(x)中确定出解析式,把x=2代入求出的解析式中得到f(2)的值,进而得到切点坐标,然后求出f(x)的导函数,把x=2代入导函数即可求出切线的斜率,根据切点坐标和斜率写出切线方程即可;
(Ⅱ)求出f(x)的导函数,令导函数等于0求出x的值,由a大于0判断出求出的x的值的大小,由x的值分区间讨论导函数的正负,根据函数的增减性,得到函数的极小值和极大值,由f(x)有三个零点,根据极大值大于0,得到极小值小于0,列出关于a的不等式求出不等式的解集即可得到a的取值范围.
点评:此题考查学生会利用导数求曲线上过某点切线方程的斜率,会根据导函数的正负判断函数的单调性并根据函数的增减性得到函数的极值,掌握函数零点的判断定理,是一道中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案