精英家教网 > 高中数学 > 题目详情
四棱锥P-ABCD的底面是边长为a的正方形,PA⊥平面ABCD,侧棱PB与底面ABCD所成的角为60°,则这个四棱锥的体积是
3
3
a3
3
3
a3
分析:利用线面垂直和线面角即可得出四棱锥的高PA,再利用四棱锥的体积计算公式即可得出.
解答:解:如图所示,
∵PA⊥平面ABCD,∴PA⊥AB,∴∠PBA=60°.
又AB=a,∴PA=AB•tan60°=
3
a

∴VP-ABCD=
1
3
PA•S正方形ABCD

=
1
3
×
3
a•a2

=
3
3
a3

故答案为
3
3
a3
点评:熟练掌握线面垂直的性质、线面角、四棱锥的体积计算公式等是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,四棱锥P-ABCD的底面是边长为1的正方形,侧棱PA⊥底面ABCD,且PA=2,E是PA的中点.
(Ⅰ)求四棱锥P-ABCD的体积;
(Ⅱ)求证:PC∥平面BDE.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示,四棱锥P-ABCD的底面是边长为a的正方形,侧棱PA⊥底面ABCD,侧面PBC内有BE⊥PC于E,且BE=
6
3
a,试在AB上找一点F,使EF∥平面PAD.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,ABCD是正方形,O是该正方形的中心,P是平面ABCD外一点,PO⊥底面ABCD,E是PC的中点.求证:
(1)PA∥平面BDE;
(2)平面EBD⊥平面PAC;
(3)若PA=AB=4,求四棱锥P-ABCD的全面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

正四棱锥P-ABCD的高为PO,若Q为CD中点,且
OQ
=
PQ
+x
PC
+y
PA
(x,y∈R)
则x+y=
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知四棱锥P-ABCD的三视图如图所示,则这个四棱锥的体积为(  )
A、
1
3
B、1
C、
2
3
D、
4
3

查看答案和解析>>

同步练习册答案