精英家教网 > 高中数学 > 题目详情
已知向量
a
=(-1,-2,1)
b
=(2,x,3)
,若
a
⊥(
a
+
b
)
,则实数x的值为
 
考点:空间向量的数量积运算
专题:平面向量及应用
分析:利用向量垂直与数量积的定义,构造关于x的议程,解方程即可得出x值.
解答: 解:∵向量
a
=(-1,-2,1)
b
=(2,x,3)

a
⊥(
a
+
b
)
,则
a
•(
a
+
b
)
=(-1,-2,1)•(1,x-2,4)=-1-2x+4+4=0,
解得:x=
7
2

故答案为:
7
2
点评:本题考查了向量垂直与数量积的关系,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an},Sn为其前n项和,且Sn+1=4an+2.(n∈N*),a1=1,
(1)设bn=an+1-2an,求bn
(2)设cn=
an
2n
,求证:{cn}是等差数列
(3)求an

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|2
a
+
b
|=5,|2
a
-
b
|=3,且(
a
+
b
)⊥(
a
-2
b
),则
a
b
的夹角为(  )
A、0
B、
π
4
C、
π
2
D、π

查看答案和解析>>

科目:高中数学 来源: 题型:

以下正确命题的个数为(  )
①命题“存在x∈R,x2-x-2≥0”的否定是:“不存在x∈R,x2-x-2<0”;
②函数f(x)=x 
1
3
-(
1
2
x的零点在区间(
1
3
1
2
)内;
③已知随机变量ξ服从正态分布N(1,σ2),P(ξ≤4)=0.79,则P(ξ≤-2)=0.21;
④函数f(x)=e-x-ex的图象的切线的斜率的最大值是-2;
⑤线性回归直线
y
=
b
x+
a
恒过样本中心(
.
x
.
y
),且至少过一个样本点.
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

设向量
a
=(1,2),
b
=(-2,y),若
a
b
,则|3
a
+
b
|等于(  )
A、
5
B、
6
C、
17
D、
26

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1,an+1=
an
an+2
(n∈N*).若bn+1=(n-2λ)•(
1
an
+1)
(n∈N*),b1=-λ,且数列{bn}是单调递增数列,则实数λ的取值范围是(  )
A、λ>
2
3
B、λ>
3
2
C、λ<
2
3
D、λ<
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(理做)根据表格中的数据,可以判定函数f(x)=lnx-x+2有一个零点所在的区间为,(k-1,k)
(k∈N*),则k的值为(  )
x12345
lnx00.691.101.391.61
A、3
B、1
C、
2
D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

如函数f(x)=-x2+2ax与函数g(x)=
a
x+1
在区间(2,5]上都是减函数,则实数a的取值范围为(  )
A、(-2,0]
B、(-2,0)
C、(0,2)
D、(0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x,y是正数,且满足2<x+2y<4.那么x2+y2的取值范围是(  )
A、(
4
5
16
5
)
B、(
4
5
,16)
C、(1,16)
D、(
16
5
,4)

查看答案和解析>>

同步练习册答案