精英家教网 > 高中数学 > 题目详情
某几何体的三视图(如图),则该几何体的体积是(  )
A、
2
3
π+6
B、
11
6
π
C、
11
3
π
D、
2
3
+6π
考点:由三视图求面积、体积
专题:计算题,空间位置关系与距离
分析:由三视图知几何体是左边为一半圆锥,右边为半圆柱的组合体,根据三视图的数据判断圆锥与圆柱的底面圆直径为2,圆柱的高为3,圆锥的高为2,利用体积公式计算可得答案.
解答: 解:由三视图知几何体是左边为一半圆锥,右边为半圆柱的组合体,
且圆锥与圆柱的底面圆直径为2,圆柱的高为3,圆锥的高为2,
∴几何体的体积V=V半圆柱+V半圆锥=
1
2
π×12×3+
1
2
×
1
3
×π×12×2=
11
6
π.
故选B.
点评:本题考查了由三视图求几何体的体积,解题的关键是判断几何体的形状及相关数据所对应的几何量.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)在(-1,1)上有定义,f(
1
2
)=1
,且满足x,y∈(-1,1)时有f(x)-f(y)=f(
x-y
1-xy
)
,数列{xn}满足x1=
1
2
xn+1=
2xn
1+xn2

(1)求f(0)的值,并证明f(x)在(-1,1)上为奇函数;
(2)探索f(xn+1)与f(xn)的关系式,并求f(xn)的表达式;
(3)是否存在自然数m,使得对于任意的n∈N*,
1
f(x1)
+
1
f(x2)
+…+
1
f(xn)
m-8
4
恒成立?若存在,求出m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在边长为1的正方形OABC中任取一点P,则点P恰好落在正方形与曲线y=
x
围成的区域内(阴影部分)的概率为(  )
A、
1
2
B、
2
3
C、
3
4
D、
4
5

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=lg
x2+1
|x|
(x≠0,x∈R)有如下命题:
(1)函数y=f(x)图象关于y轴对称.
(2)当x>0时,f(x)是增函数,x<0时,f(x)是减函数.
(3)函数f(x)的最小值是lg2.
(4)f(x)无最大值,也无最小值.
其中正确命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}是公比为q的等比数列,它的前n项和为Sn,若
lim
n→∞
Sn=2,则此等比数列的首项a1的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=(ax+1)(x-a)为偶函数,且函数y=f(x)在x∈(0,+∞)上单调递增,则实数a的值为(  )
A、±1B、-1C、1D、0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知非负实数a,b满足a+b≤1,则关于x的一元二次方程x2+ax+b2=0有实根的概率是(  )
A、
1
3
B、
1
2
C、
1
6
D、
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

如图茎叶图记录了甲、乙两组各四名同学的植树的棵数.
(Ⅰ)从甲、乙两组中各随机取一名学生,求这两名学生植树总棵数为19的概率;
(Ⅱ)甲组中有两名同学约定在早上7点到8点之间到达车站一同去植树,且在车站彼此等候40分钟,超过40分钟,则各自到植树地点再会面.求他们在车站会面的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+
1
x
-a(x≠0)
,a为常数且a>2,则f(x)的零点个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

同步练习册答案