精英家教网 > 高中数学 > 题目详情

【题目】已知{an}为等差数列,前n项和为Sn(nN*){bn}是首项为2的等比数列,且公比大于0b2b312b3a42a1S1111b4.

(1){an}{bn}的通项公式;

(2)求数列{a2nbn}的前n项和(nN*)

【答案】(1)an3n2bn2n;(2)(3n-4)2n+2+16.

【解析】

(1)根据题意设等差数列{an}的公差为d,等比数列{bn}的公比为q,代入已知条件计算即可.

(2)由数列{an}{bn}的通项公式写出数列{a2nbn}的前n项和,再利用错位相减法计算即可.

解:(1)设等差数列{an}的公差为d,等比数列{bn}的公比为q.

由已知b2b312,得b1(qq2)12,而b12

q2q60.

又∵q0,解得q2.

bn2n

b3a42a1,可得3da18

S1111b4,可得a15d16

联立①②,解得a11d3,由此可得an3n2.

{an}的通项公式为an3n2{bn}的通项公式为bn2n.

(2)设数列{a2nbn}的前n项和为Tn,由a2n6n2,有

Tn4×210×2216×23(6n2)×2n

2Tn4×2210×2316×24(6n8)×2n(6n2)×2n1.

上述两式相减,得

.Tn(3n4)2n216.

∴数列{a2nbn}的前n项和为(3n4)2n216.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

知圆锥曲线参数和定点此圆锥曲线的左、右焦点,以原点,以的正半轴为极轴建立极坐标系.

1直线直角坐标方程;

2过点与直线直的直线此圆锥曲线于两点,求值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,求不等式的解集;

2)若不等式的解集包含[–11],求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )

A. 1盏 B. 3盏 C. 5盏 D. 9盏

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义首项为1且公比为正数的等比数列为“M-数列”.

1)已知等比数列{an}满足:,求证:数列{an}为“M-数列”;

2)已知数列{bn}满足:,其中Sn为数列{bn}的前n项和.

①求数列{bn}的通项公式;

②设m为正整数,若存在“M-数列”{cn},对任意正整数k,当km时,都有成立,求m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是奇函数(.

1)求实数的值;

2)试判断函数上的单调性,并证明你的结论;

3)若对任意的,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点在抛物线上,则当点到点的距离与点到抛物线焦点距离之和取得最小值时,点的坐标为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,线段AB=8,点C在线段AB上,且AC=2,P为线段CB上一动点,点A绕着C旋转后与点B绕点P旋转后重合于点D,设CP=x,CPD的面积为f(x).求f(x)的最大值(  ).

A.     B. 2

C.3     D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线 ,其焦点到准线的距离为2,直线与抛物线交于两点,过分别作抛物线的切线交于点.

(Ⅰ)求的值;

(Ⅱ)若,求面积的最小值.

查看答案和解析>>

同步练习册答案