精英家教网 > 高中数学 > 题目详情
设函数y=f(x)的定义域为D,若对于任意的x1,x2∈D,当x1+x2=2a时,恒有f(x1)+f(x2)=2b,则称点(a,b)为函数y=f(x)图象的对称中心.研究函数f(x)=x3+sinx+2的某一个对称中心,并利用对称中心的上述定义,可得到f(-1)+f(-
19
20
)+
+f(
19
20
)+f(1)
=
 
考点:函数的值
专题:函数的性质及应用
分析:函数f(x)=x3+sinx+1图象的对称中心的坐标为(0,2),即x1+x2=0时,总有f(x1)+f(x2)=4,再利用倒序相加,即可得到结论
解答: 解:∵f(x)=x3+sinx+2,
∴f'(x)=3x2+cosx,f''(x)=6x-sinx,
∴f''(0)=0,
而f(x)+f(-x)=x3+sinx+2+-x3-sinx+2=4,
函数f(x)=x3+sinx+1图象的对称中心的坐标为(0,2),
即x1+x2=0时,总有f(x1)+f(x2)=4,
f(-1)+f(-
19
20
)+
+f(
19
20
)+f(1)

=20×4+f(0)
=82.
故答案为:82.
点评:本题考查函数的对称性,确定函数的对称中心,利用倒序相加x1+x2=0时,总有f(x1)+f(x2)=4,是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知
sinα-cosα
sinα+cosα
=1+
2
,则tan2α=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式x2-3x+2<0的解集是(  )
A、{x|x>2}
B、{x|x>1}
C、{x|1<x<2}
D、{x|x<1或x>2}

查看答案和解析>>

科目:高中数学 来源: 题型:

设Sn是等差数列{an}的前n项和,若S7=42,则a4=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某商品每件成本9元,售价30元,每星期卖出432件,如果降低价格,销售量增加,且每星期多卖出的商品件数与商品单价的降低值x(单位:元,0≤x≤30)的平方成正比,已知商品单价降低2元是,一星期多卖出24件,当定价为
 
元时,才能使一个星期的销售利润最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

判断函数f(x)=lg
1-x
1+x
的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M={x|-1<x<2},N={x|x<a},若M⊆N,则实数a的取值范围是(  )
A、(2,+∞)
B、[2,+∞)
C、(-∞,-1)
D、(-∞,-1]

查看答案和解析>>

科目:高中数学 来源: 题型:

sin2002°sin2008°-cos6°
sin2002°cos2008°+sin6°
的值是(  )
A、-
1
tan28°
B、
1
tan28°
C、-tan28°
D、tan28°

查看答案和解析>>

科目:高中数学 来源: 题型:

若用长度分别为1,1,1,1,x,x的六根笔直的铁棒通过焊接其端点(不计损耗)可以得到两种不同形状的三棱锥形的铁架,则实数x的取值范围是
 

查看答案和解析>>

同步练习册答案