【题目】已知函数f(x)= +x在x=1处的切线方程为2x﹣y+b=0.
(1)求实数a,b的值;
(2)设函数g(x)=f(x)+ x2﹣kx,且g(x)在其定义域上存在单调递减区间(即g′(x)<0在其定义域上有解),求实数k的取值范围.
【答案】
(1)解:∵f(x)= +x,
∴f′(x)= +1,
∵f(x)= +x在x=1处的切线方程为2x﹣y+b=0,
∴ +1=2,2﹣1+b=0,
∴a=1,b=﹣1;
(2)解:f(x)=lnx+x,g(x)= x2﹣kx+lnx+x,
∴g′(x)=x﹣k+ +1,
∵g(x)在其定义域上存在单调递减区间,
∴g′(x)<0在其定义域上有解,
∴x﹣k+ +1<0在其定义域上有解,
∴k>x+ +1在其定义域上有解,
∴k>3.
【解析】(1)求导数,利用函数f(x)= +x在x=1处的切线方程为2x﹣y+b=0,建立方程组求实数a,b的值;(2)g(x)在其定义域上存在单调递减区间,即g′(x)<0在其定义域上有解,分离参数求最值,即可求实数k的取值范围.
【考点精析】认真审题,首先需要了解利用导数研究函数的单调性(一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减).
科目:高中数学 来源: 题型:
【题目】在正三角形中, 分别是边上的点,满足 (如图),将沿折起到的位置,使二面角成直二面角,连接 (如图).
(1) 求证: 平面;
(2)求二面角的余弦值的大小;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆的左顶点为,且椭圆与直线相切,
(1)求椭圆的标准方程;
(2)过点的动直线与椭圆交于两点,设为坐标原点,是否存在常数,使得?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}中,a1= ,an= (n≥2,n∈N+).
(1)求a2 , a3 , a4的值,并猜想数列{an}的通项公式an .
(2)用数学归纳法证明你猜想的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲乙丙三人在进行一项投掷骰子游戏中规定:若掷出1点,甲得1分,若掷出2点或3点,乙得1分;若掷出4点或5点或6点,丙得1分,前后共掷3次,设x,y,z分别表示甲、乙、丙三人的得分.
(1)求x=0,y=1,z=2的概率;
(2)记ξ=x+z,求随机变量ξ的概率分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设命题p:实数x满足x2﹣4ax+3a2<0(a>0),命题q:实数x满足 ≤0,
(1)若a=1,且p∧q为真,求实数x的取值范围;
(2)若¬p是¬q的充分不必要条件,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数g(x)= 是奇函数,f(x)=lg(10x+1)+bx是偶函数.
(1)求a+b的值.
(2)若对任意的t∈[0,+∞),不等式g(t2﹣2t)+g(2t2﹣k)>0恒成立,求实数k的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com