精英家教网 > 高中数学 > 题目详情
已知数列a1,a2-a1,a3-a2,…,an-an-1,…是首项为1,公比为
1
2
的等比数列,求数列an的通项公式为
an=2-
1
2n-1
an=2-
1
2n-1
分析:利用等比数列的求和公式可求得an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)(n≥2),验证n=1的情形.
解答:解:an=a1+(a2-a1)+(a3-a2)+…+(an-an-1
=
1-(
1
2
)n
1-
1
2
=2-
1
2n-1
(n≥2),
n=1时,a1=1,
所以an=2-
1
2n-1

故答案为:an=2-
1
2n-1
点评:本题考查等比数列的求和公式、数列通项公式的求解,考查学生的运算求解能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列a1,a2,…an,…和数列b1,b2,…,bn…,其中a1=p,b1=q,an=pan-1,bn=qan-1+rbn-1(n≥2),(p,q,r是已知常数,且q≠0,p>r>0),用p,q,r,n表示bn,并用数学归纳法加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn,令Tn=
S1+S2+…+Sn
n
,称Tn为数列{an}的“理想数”,已知数列a1,a2…a501的“理想数”为2008,则数列2,a1,a2…a501的“理想数”为(  )
A、2002B、2004
C、2006D、2008

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn,令Tn=
S1+S2+…+Sn
n
,称Tn为数列a1,a2,…,an的“理想数”,已知数列a1,a2,…,a500的“理想数”为2004,那么数列12,a1,a2,…,a500的“理想数”为(  )
A、2002B、2004
C、2008D、2012

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn,令Tn=
S1+S2+…+Sn
n
,称Tn为数列a1,a2,…,an的“理想数”,已知数列a1,a2,…,a401的“理想数”为2010,那么数列6,a1,a2,…,a401的“理想数”为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列a1,a2,…,a30,其中a1,a2,…,a10是首项为1公差为1的等差数列;a10,a11,…,a20是公差为d的等差数列;a20,a21,…a30是公差为d2的等差数列.
(Ⅰ)若a20=40,求 d;
(Ⅱ)在(Ⅰ)的条件下,求这个数列三十项的和S30

查看答案和解析>>

同步练习册答案