精英家教网 > 高中数学 > 题目详情
设椭圆的四个顶点A、B、C、D, 若菱形ABCD的内切圆恰好经过椭圆的焦点, 则椭圆的离心率为         __  

试题分析:由题意,不妨设点A(a,0),B(0,b),则直线AB的方程为:,即bx+ay-ab=0。
∵菱形ABCD的内切圆恰好过焦点,∴原点到直线AB的距离为
∴a2b2=c2(a2+b2),∴a2(a2-c2)=c2(2a2-c2),∴a4-3a2c2+c4=0,∴e4-3e2+1=0,
解得e2=,∵0<e<1,∴e=
点评:中档题,解题的关键是利用菱形ABCD的内切圆恰好过焦点,得到原点到直线AB的距离等于半焦距,确定得到a,b,c的关系。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

给定椭圆 ,称圆心在原点,半径为的圆是椭圆的“准圆”.若椭圆的一个焦点为,且其短轴上的一个端点到的距离为.
(Ⅰ)求椭圆的方程和其“准圆”方程;
(Ⅱ)点是椭圆的“准圆”上的一个动点,过动点作直线,使得与椭圆都只有一个交点,试判断是否垂直,并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆(a>b>0)的焦距为4,且与椭圆有相同的离心率,斜率为k的直线l经过点M(0,1),与椭圆C交于不同两点A、B.
(1)求椭圆C的标准方程;
(2)当椭圆C的右焦点F在以AB为直径的圆内时,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点P(4, 4),圆C:与椭圆E:有一个公共点A(3,1),F1、F2分别是椭圆的左、右焦点,直线PF1与圆C相切.

(Ⅰ)求m的值与椭圆E的方程;(Ⅱ)设Q为椭圆E上的一个动点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆过点,离心率为,左、右焦点分别为.点为直线上且不在轴上的任意一点,直线与椭圆的交点分别为为坐标原点.设直线的斜率分别为

(i)证明:
(ii)问直线上是否存在点,使得直线的斜率满足?若存在,求出所有满足条件的点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的左焦点为F,右顶点为A,以FA为直径的圆经过椭圆的上顶点,则椭圆的离心率为(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:(a>b>0),则称以原点为圆心,r=的圆为椭圆C的“知己圆”。
(Ⅰ)若椭圆过点(0,1),离心率e=;求椭圆C方程及其“知己圆”的方程;
(Ⅱ)在(Ⅰ)的前提下,若过点(0,m)且斜率为1的直线截其“知己圆”的弦长为2,求m的值;
(Ⅲ)讨论椭圆C及其“知己圆”的位置关系.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知是长轴为的椭圆上三点,点是长轴的一个顶点,过椭圆中心,且.

(1)建立适当的坐标系,求椭圆方程;
(2)如果椭圆上两点使直线轴围成底边在轴上的等腰三角形,是否总存在实数使?请给出证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的一个焦点是,且截直线所得弦长为,求该椭圆的方程.

查看答案和解析>>

同步练习册答案