精英家教网 > 高中数学 > 题目详情
已知椭圆的一个焦点是,且截直线所得弦长为,求该椭圆的方程.

试题分析:由已知,所以直线过椭圆焦点,且垂直于轴;
,可得,∴过焦点的弦长为
 ,得,所以
∴所求椭圆的方程为.
点评:求出,判断出直线过椭圆焦点,且垂直于轴是解决此题的关键,还要注意椭圆中的应用.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知离心率为的椭圆过点为坐标原点,平行于的直线交椭圆于不同的两点

(1)求椭圆的方程。
(2)证明:若直线的斜率分别为,求证:+=0。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题12分)
已知椭圆,斜率为的直线交椭圆两点,且点在直线的上方,
(1)求直线轴交点的横坐标的取值范围;
(2)证明:的内切圆的圆心在一条直线上.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设椭圆的四个顶点A、B、C、D, 若菱形ABCD的内切圆恰好经过椭圆的焦点, 则椭圆的离心率为         __  

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)设椭圆的左、右焦点分别为,上顶点为,过点垂直的直线交轴负半轴于点,且
(1)求椭圆的离心率; (2)若过三点的圆恰好与直线相切,
求椭圆的方程;

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆上有两点P、Q ,O为原点,若OP、OQ斜率之积为,等于(      )
A. 4B. 64C. 20D.不确定

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是方程x=0的两个实根,那么过点)的直线与椭圆的位置关系是
A.相交B.相切C.相交或相切D.相离

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线 和椭圆,则直线和椭圆相交有(   )
A.两个交点B.一个交点C.没有交点D.无法判断

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

直线y=x+3与曲线=1交点的个数为___________.

查看答案和解析>>

同步练习册答案