精英家教网 > 高中数学 > 题目详情
是方程x=0的两个实根,那么过点)的直线与椭圆的位置关系是
A.相交B.相切C.相交或相切D.相离
A

试题分析:由于是方程x=0的两个实根,则判别式大于等于零,可知tan2+8cos ,a+b=tan,ab=-2cos,那么直线AB的斜率为k=b+a,那么即为k=tan,而曲线,直线AB:y-,联立方程组可知结论为相交或相切,选A.
点评:解决该试题的关键是利用方程有两个实根,得到方程的两个根,然后利用联立方程组的思想得到直线与椭圆的位置关系。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆过点,离心率为,左、右焦点分别为.点为直线上且不在轴上的任意一点,直线与椭圆的交点分别为为坐标原点.设直线的斜率分别为

(i)证明:
(ii)问直线上是否存在点,使得直线的斜率满足?若存在,求出所有满足条件的点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的焦点坐标是(  )
A.(0,)、(0,)B. (0,-1)、(0,1)
C.(-1,0)、(1,0)D.(,0)、(,0)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知椭圆,其左准线为,右准线为,抛物线以坐标原点为顶点,为准线,两点.
(1)求抛物线的标准方程;
(2)求线段的长度.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的一个焦点是,且截直线所得弦长为,求该椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆的左右焦点分别为,过焦点的直线交该椭圆于两点,若的内切圆面积为两点的坐标分别为,则的值为           

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

直线被椭圆所截得的弦的中点坐标是(   )
A.(, B.(, ) C.(,D.(, )

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的长轴长是短轴长的2倍且经过点A(2,0),求椭圆的标准方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若焦点在x轴上的椭圆的离心率为,则n=(    )
A.B.C.D.

查看答案和解析>>

同步练习册答案