精英家教网 > 高中数学 > 题目详情
20.已知某智能手机制作完成之后还需要依次通过三道严格的审核程序,第-道审核、第二道审核、第三道审核通过的概率分别为$\frac{25}{32},\frac{4}{5},\frac{4}{5}$,每道程序是相互独立的,且一旦审核不通过就停止审核,每部手机只有三道程序都通过才能出厂销售.
(1)求审核过程中只通过两道程序的概率;
(2)现有3部智能手机进人审核,记这3部手机可以出厂销售的部数为X,求X的分布列及数学期望.

分析 (1)设“审核过程中只通过两道程序”为事件A,则P(A)=$\frac{25}{32}×\frac{4}{5}×(1-\frac{4}{5})$.
(2)每部该智能手机可以出厂销售的概率为$\frac{25}{32}×\frac{4}{5}×\frac{4}{5}=\frac{1}{2}$.由题意可得X可取0,1,2,3,则X~B$(3,\frac{1}{2})$.

解答 解:(1)设“审核过程中只通过两道程序”为事件A,则$P(A)=\frac{25}{32}×\frac{4}{5}×({1-\frac{4}{5}})=\frac{1}{8}$.
(2)每部该智能手机可以出厂销售的概率为$\frac{25}{32}×\frac{4}{5}×\frac{4}{5}=\frac{1}{2}$.由题意可得X可取0,1,2,3,
则X~B$(3,\frac{1}{2})$.$P({X=0})={({1-\frac{1}{2}})^3}=\frac{1}{8},P({X=1})=C_3^1×\frac{1}{2}×{({1-\frac{1}{2}})^2}=\frac{3}{8}$,$P({X=2})=C_3^2×{({\frac{1}{2}})^2}×({1-\frac{1}{2}})=\frac{3}{8},P({X=3})={({\frac{1}{2}})^3}=\frac{1}{8}$.所以X的分布列为:

X0123
P$\frac{1}{8}$$\frac{3}{8}$$\frac{3}{8}$$\frac{1}{8}$
故$E(X)=0×\frac{1}{8}+1×\frac{3}{8}+2×\frac{3}{8}+3×\frac{1}{8}=\frac{3}{2}$(或$\frac{1}{2}×3=\frac{3}{2}$).

点评 本题考查了相互独立事件的概率计算公式、二项分布列的概率计算公式及其数学期望,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的短轴长等于长轴长的一半,椭圆C上的点到右焦点F的最短距离为2-$\sqrt{3}$,直线l:y=x+m与椭圆C交于不同的两点A(x1,y1),B(x2,y2).
(Ⅰ)求椭圆C的方程;
(Ⅱ)若△AOB的面积为1,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.将函数f(x)=$\sqrt{3}$cos(2x+$\frac{π}{3}$)-1的图象向左平移$\frac{π}{3}$个单位长度,再向上平移1个单位长度,得到函数g(x)的图象,则函数g(x)具有性质②③④.(填入所有正确性质的序号)
①最大值为$\sqrt{3}$,图象关于直线x=-$\frac{π}{3}$对称;
②图象关于y轴对称;
③最小正周期为π;
④图象关于点($\frac{π}{4}$,0)对称;
⑤在(0,$\frac{π}{3}$)上单调递减.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.选择合适的抽样方法抽样,写出抽样过程.
(1)有30个篮球,其中甲厂生产的有21个,乙厂生产的有9个,抽取10个入样.
(2)有甲厂生产的30个篮球,其中一箱21个,另一箱9个,抽取3个入样.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π),在同一周期内,当x=$\frac{π}{2}$时,f(x)取得最大值3,当x=-$\frac{3π}{2}$时,f(x)取得最小值-3.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)求函数f(x)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数$f(x)=\left\{\begin{array}{l}{log_{\frac{1}{2}}}x,x>1\\ \frac{1}{{{2^{x-1}}}},x≤1\end{array}\right.$,则f(f(4))=(  )
A.-3B.$\frac{1}{8}$C.3D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设函数F(x)=f(x)-$\frac{1}{f(x)}$,其中x-log2f(x)=0,则函数F(x)是(  )
A.奇函数且在(-∞,+∞)上是增函数B.奇函数且在(-∞,+∞)上是减函数
C.偶函数且在(-∞,+∞)上是增函数D.偶函数且在(-∞,+∞)上是减函数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.关于x的不等式ax2+x+b>0的解集为(1,2),则a+b=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知两点M(-1,2)与N(3,4),若点P在直线l:y=x上,则|PM|+|PN|的取值构成的集合为[$\sqrt{26}$,+∞).

查看答案和解析>>

同步练习册答案