(本题满分14分)
设直线
与抛物线
交于不同两点A、B,F为抛物线的焦点。
(1)求
的重心G的轨迹方程;
(2)如果
的外接圆的方程。
①
;②
。
【解析】
试题分析:(1)设出A、B、G的坐标,联立直线与抛物线,利用重心坐标公式,即可求得重心G的轨迹方程;
(2)确定AB的中垂线方程为x+y-6=0,令△ABF外接圆圆心为C(a,6-a),求出弦AB的长,C到AB的距离,利用|CA|=|CF|,即可求得圆心坐标与半径,从而可得△ABF的外接圆的方程。
解①设
,
,
,重心
,
∴△>0![]()
<1且
(因为A、B、F不共线)
故![]()
∴重心G的轨迹方程为
………6分(范围不对扣1分)
②
,则
,设
中点为![]()
∴
∴![]()
那么AB的中垂线方程为
,令△ABF外接圆圆心为![]()
又
,C到AB的距离为![]()
∴![]()
∴
∴![]()
∴所求的圆的方程为
………14分
考点:本试题主要考查了轨迹方程,考查圆的方程,属于中档题
点评:解决该试题的关键是确定圆的圆心与半径。利用三角形的重心坐标公式及利用待定系数法求解圆的方程,主要体现了方程思想的应用。
科目:高中数学 来源: 题型:
| π |
| 3 |
|
查看答案和解析>>
科目:高中数学 来源: 题型:
(本题满分14分)如图,四边形ABCD为矩形,AD⊥平面ABE,AE=EB=BC=2,
为
上的点,且BF⊥平面ACE.
(1)求证:AE⊥BE;(2)求三棱锥D-AEC的体积;(3)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年江苏省高三上学期期中考试数学 题型:解答题
(本题满分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}
(Ⅰ)若A
B=[0,3],求实数m的值
(Ⅱ)若A
CRB,求实数m的取值范围
查看答案和解析>>
科目:高中数学 来源:2010-2011学年福建省高三上学期第三次月考理科数学卷 题型:解答题
(本题满分14分)
已知点
是⊙
:
上的任意一点,过
作
垂直
轴于
,动点
满足
。
(1)求动点
的轨迹方程;
(2)已知点
,在动点
的轨迹上是否存在两个不重合的两点
、
,使
(O是坐标原点),若存在,求出直线
的方程,若不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源:2014届江西省高一第二学期入学考试数学 题型:解答题
(本题满分14分)已知函数
.
(1)求函数
的定义域;
(2)判断
的奇偶性;
(3)方程
是否有根?如果有根
,请求出一个长度为
的区间
,使![]()
![]()
;如果没有,请说明理由?(注:区间的长度为
).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com