精英家教网 > 高中数学 > 题目详情
设数列{an}的首项a1∈(0,1),an+1=
3-an
2
(n∈N+
(I)求{an}的通项公式;
(II)设bn=an
3-2an
,判断数列{bn}的单调性,并证明你的结论.
分析:(Ⅰ)  由已知an+1=
3-an
2
(n∈N+),递推公式两边同减去1得出,an+1-1=
1-an
2
=-
1
2
 (an -1)
,,判断出{an-1}为等比数列.先求出{an-1}的通项公式,再求出{an}的通项公式.
(Ⅱ) 判断数列{bn}的单调性,可以转化为考虑{bn2}的单调性,应判断出 bn=的正负性,结合不等式的性质证明.
解答:解:(Ⅰ) 已知an+1=
3-an
2
(n∈N+),递推公式两边同减去1得出,
an+1-1=
1-an
2
=-
1
2
 (an -1)

故{an-1}为等比数列,且首项为a1-1,公比为-
1
2

根据等比数列通项公式可得{an-1} 的通项公式为
 an-1=(a1-1)(-
1
2
)
n-1

∴{an}的通项公式为
an=1+(a1-1)(-
1
2
)n-1

(Ⅱ)是递增数列.
证明如下:
∵0<a1<1,
∴-1<a1-1<0,
又当n≥2时,(-
1
2
)
n-1
-
1
2

根据不等式的性质得出
0<(a1-1)(-
1
2
)
n-1
1
2

an∈(0,1)∪(1,
3
2
)
bn=an
3-2an
>0

∴bn+12-bn2=an+12(3-2an+1)-an2(3-2an
=(
3-an
2
)2an-
a
2
n
(3-2an)=
9
4
an(an-1)2>0

∴bn+12>bn2⇒bn+1>bn
故{bn}为递增数列.
点评:本题考查等比数列的判定,通项公式求解,考查变形构造、计算能力,以及不等式的证明.属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列{an}的首项a1=
3
2
,前n项和为Sn,且满足2an+1+Sn=3( n∈N*).
(Ⅰ)求a2及an
(Ⅱ)求满足
18
17
S2n
Sn
8
7
的所有n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的首项a1=a≠
1
4
,且an+1=
1
2
an
(n为偶数)
an+
1
4
(n为奇数)
,n∈N*,记bn=a2n-1-
1
4
cn=
sinn
|sinn|
bn
,n∈N*
(1)求a2,a3
(2)判断数列{bn}是否为等比数列,并证明你的结论;
(3)当a>
1
4
时,数列{cn}前n项和为Sn,求Sn最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的首项a1=
1
2
,且an+1=
2an
1+an
(n∈N*).
(1)求a2,a3,a4
(2)根据上述结果猜想数列{an}的通项公式,并用数学归纳法加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•昌平区二模)设数列{an}的首项a1=-
1
2
,前n项和为Sn,且对任意n,m∈N*都有
Sn
Sm
=
n(3n-5)
m(3m-5)
,数列{an}中的部分项{abk}(k∈N*)成等比数列,且b1=2,b2=4.
(Ⅰ)求数列{an}与{bn}与的通项公式;
(Ⅱ)令f(n)=
1
bn+1
,并用x代替n得函数f(x),设f(x)的定义域为R,记cn=f(0)+f(
1
n
)+f(
2
n
)+…+f(
n
n
)(n∈N*)
,求
n
i=1
1
cici+1

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的首项a1=
5
4
,且an+1=
1
2
a
n
,n为偶数
an+
1
4
,n为奇数
,记bn=a2n-1-
1
4
,n=1,2,3,…
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)若设数列{cn}的前n项和为Sn,cn=nbn,求Sn

查看答案和解析>>

同步练习册答案