精英家教网 > 高中数学 > 题目详情
销售甲、乙两种商品所得利润分别为P(单位:万元)和Q(单位:万元),它们与投入资金(单位:万元)的关系有经验公式, .  今将3万元资金投入经营甲、乙两种商品,其中对甲种商品投资(单位:万元)
(1)试建立总利润(单位:万元)关于的函数关系式,并指明函数定义域;
(2)如何投资经营甲、乙两种商品,才能使得总利润最大.
(1),定义域为,(2)甲商品投入万元,乙商品投入万元时,总利润最大为万元.

试题分析:(1)函数应用题,关键关键题意正确列出等量关系,并结合实际意义列出定义域. 总利润为甲、乙两种商品所得利润之和,对甲种商品投资时,对乙种商品投资所以,其定义域为,(2)令,则函数为关于t的二次函数: ,又所以当时,即时,.
试题解析:解:(1)         4分
其定义域为          6分
(2)令,有
       10分
                 12分
所以当时,即时,       14分
答:当甲商品投入万元,乙商品投入万元时,总利润最大为万元.         16分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图所示,某人想制造一个支架,它由四根金属杆构成,其底端三点均匀地固定在半径为的圆上(圆在地面上),三点相异且共线,与地面垂直. 现要求点到地面的距离恰为,记用料总长为,设

(1)试将表示为的函数,并注明定义域;
(2)当的正弦值是多少时,用料最省?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数 (x∈R,且x≠2).
(1)求的单调区间;
(2)若函数与函数在x∈[0,1]上有相同的值域,求a的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,且满足:函数的图像与直线有且只有一个交点.
(1).求实数的值;
(2).若关于的不等式的解集为,求实数的值;
(3).在(2)成立的条件下,是否存在,使得的定义域和值域均为,若存在,求出的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

命题p:?x∈R,cosx>1的否定是(  )
A.¬p:?x∈R,cosx≤1B.¬p:?x∈R,cosx≤1
C.¬p:?x∈R,cosx<1D.¬p:?x∈R,cosx<1

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数,对于任意的,有如下条件:
;  ②; ③;  ④
其中能使恒成立的条件序号是        .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

(1)已知函数的定义域为是奇函数,且当时,,若函数的零点恰有两个,则实数的取值范围是(  )
A.B.
C.D.
(2)对于函数在其定义域内任意的,有如下结论:



.
上述结论中正确结论的序号是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

轮滑是穿着带滚轮的特制鞋在坚硬的场地上滑行的运动.如图,助跑道ABC是一段抛物线,某轮滑运动员通过助跑道获取速度后飞离跑道然后落到离地面高为1 m的平台上E处,飞行的轨迹是一段抛物线CDE(抛物线CDE与抛物线ABC在同一平面内),D为这段抛物线的最高点.现在运动员的滑行轮迹所在平面上建立如图所示的直角坐标系,x轴在地面上,助跑道一端点A(0,4),另一端点C(3,1),点B(2,0),单位:m.
(1)求助跑道所在的抛物线方程;
(2)若助跑道所在抛物线与飞行轨迹所在抛物线在点C处有相同的切线,为使运动员安全和空中姿态优美,要求运动员的飞行距离在4 m到6 m之间(包括4 m和6 m),试求运动员飞行过程中距离平台最大高度的取值范围.
(注:飞行距离指点C与点E的水平距离,即这两点横坐标差的绝对值)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数,则     

查看答案和解析>>

同步练习册答案