精英家教网 > 高中数学 > 题目详情

如图,平面VAD⊥平面ABCD,△VAD是等边三角形,ABCD是矩形,AB∶AD=∶1,F是AB的中点.

  (1)求VC与平面ABCD所成的角;

  (2)求二面角V-FC-B的度数;

  (3)当V到平面ABCD的距离是3时,求B到平面VFC的距离.

(1)VC与平面ABCD成30°.

  (2)二面角V-FC-B的度数为135°.

  (3)B到面VCF的距离为


解析:

取AD的中点G,连结VG,CG.

  (1)∵ △ADV为正三角形,∴ VG⊥AD.

  又平面VAD⊥平面ABCD.AD为交线,

  ∴ VG⊥平面ABCD,则∠VCG为CV与平面ABCD所成的角.

  设AD=a,则

  在Rt△GDC中,

  

  在Rt△VGC中,

  ∴ 

  即VC与平面ABCD成30°.

  (2)连结GF,则

  而 

  在△GFC中,. ∴ GF⊥FC.

  连结VF,由VG⊥平面ABCD知VF⊥FC,则∠VFG即为二面角V-FC-D的平面角.

  在Rt△VFG中,

  ∴ ∠VFG=45°. 二面角V-FC-B的度数为135°.

  (3)设B到平面VFC的距离为h,当V到平面ABCD的距离是3时,即VG=3.

  此时

  ∴ 

    

  ∵ 

  ∴ 

  ∴ 

  ∴  即B到面VCF的距离为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

11、如图所示,平面M、N互相垂直,棱l上有两点A、B,AC?M,BD?N,且AC⊥l,AB=8cm,AC=6cm,BD=24cm,则CD=
26cm

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,边长为a的正△ABC的中线AF与中位线DE相交于G,已知△A′ED是△AED绕DE旋转过程中的一个图形,现给出下列命题,其中正确的命题有
(1)(2)(3)
(1)(2)(3)
.(填上所有正确命题的序号) 
(1)动点A′在平面ABC上的射影在线段AF上;
(2)三棱锥A′-FED的体积有最大值;
(3)恒有平面A′GF⊥平面BCED;
(4)异面直线A′E与BD不可能互相垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•石景山区一模)如图,已知平面α∩β=l,A、B是l上的两个点,C、D在平面β内,且DA⊥α,CB⊥α,AD=4,AB=6,BC=8,在平面α上有一个动点P,使得∠APD=∠BPC,则△PAB面积的最大值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,边长为a的等边三角形ABC的中线AF与中位线DE交于点G,将△ADE绕DE旋转得到△A′DE(A′∉平面ABC),则下列叙述错误的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥A-BCD中,平行于BC的平面MNPQ分别交AB、AC、CD、BD于M、N、P、Q四点,且MN=PQ.
(1)求证:四边形MNPQ为平行四边形;
(2)试在直线AC上找一点F,使得MF⊥AD.

查看答案和解析>>

同步练习册答案