精英家教网 > 高中数学 > 题目详情
已知动点P(x,y)与两个定点M(-1,0),N(1,0)的连线的斜率之积等于常数λ(λ≠0)
(1)求动点P的轨迹C的方程;
(2)试根据λ的取值情况讨论轨迹C的形状;
(3)当λ=2时,对于平面上的定点E(-
3
,0),F(
3
,0)
,试探究轨迹C上是否存在点P,使得∠EPF=120°,若存在,求出点P的坐标;若不存在,说明理由.
解、(1)由题设可知;PM,PN的斜率存在且不为0,
则由kPM•kPN=λ得:
y
x+1
y
x-1
,即x2-
y2
λ
=1  (y≠0)

所以动点P的轨迹C的方程为x2-
y2
λ
=1  (y≠0)

(2)讨论如下:
①当λ>0时,轨迹C为中心在原点,焦点在x 轴上的双曲线(除去顶点)
②当-1<λ<0时,轨迹C为中心在原点,焦点在x 轴上的椭圆(除去长轴两个端点)
③当λ=-1时,轨迹C为以原点为圆心,1为半径的圆(除去点(-1,0),(1,0))
④当λ<-1时,轨迹C为中心在原点,焦点在y轴上的椭圆(除去短轴两个端点);
(3)当λ=2时,轨迹C的方程为x2-
y2
2
=1  (y≠0)
,显然定点E、F为其左右焦点.
假设存在这样的点P,使得∠EPF=120°,记∠EPF=θ,
设PE=m,PF=n,EF=2
3

那么在△EPF中:由|m-n|=2,得m2+n2-2mn=4,
(2
3
)2=m2+n2-2mncosθ

两式联立得:2mn(1-cosθ)=8,所以mn=
4
1-cosθ
=
4
1-cos120°
=
8
3


S△EPF=
1
2
mnsin120°=
1
2
×
8
3
×
3
2
=
2
3
3
 
再设P(xP,yP
又因为S△EPF=
1
2
|EF||yP|=
1
2
×2
3
|yP|=
2
3
3

所以|yP|=
2
3
yP
2
3
代入椭圆的方程可得:xP2-
2
3
)2
2
=1

所以xP
11
3
,所以满足题意的点P有四个,坐标分别为:(
11
3
2
3
)
(-
11
3
2
3
)
(
11
3
,-
2
3
)
(-
11
3
,-
2
3
)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知动点P(x,y)到原点的距离的平方与它到直线l:x=m(m是常数)的距离相等.
(1)求动点P的轨迹方程C;
(2)就m的不同取值讨论方程C的图形.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知动点P(x,y)满足,
x2+y2-4x+6y+13
+
x2+y2+6x+4y+13
=
26
,则
y-1
x-3
取值范围(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知动点P(x,y)与两定点M(-1,0),N(1,0)连线的斜率之积等于常数λ(λ≠0).
(I) 求动点P的轨迹C的方程;
(II) 试根据λ的取值情况讨论轨迹C的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知动点P(x,y)满足
(x+2)2+y2
-
(x-2)2+y2
=2,则动点P的轨迹是
双曲线的一支(右支)
双曲线的一支(右支)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知动点P(x,y)在椭圆C:
x2
25
+
y2
16
=1上,F为椭圆C的右焦点,若点M满足|
MF
|=1且
MP
MF
=0,则|
PM
|的最小值为(  )
A、
3
B、3
C、
12
5
D、1

查看答案和解析>>

同步练习册答案