精英家教网 > 高中数学 > 题目详情
在四面体ABCD中,AB=CD=6,BC=AC=AD=BD=5,则该四面体外接球的表面积
 
考点:球内接多面体
专题:计算题,空间位置关系与距离
分析:分别取AB,CD的中点E,F,连接相应的线段,由条件可知,球心G在EF上,可以证明G为EF中点,求出球的半径,然后求出球的表面积.
解答: 解:分别取AB,CD的中点E,F,连接相应的线段CE,ED,EF,由条件,AB=CD=4,BC=AC=AD=BD=5,可知,△ABC与△ADB,都是等腰三角形,
AB⊥平面ECD,∴AB⊥EF,同理CD⊥EF,∴EF是AB与CD的公垂线,球心G在EF上,可以证明G为EF中点,(△AGB≌△CGD)
DE=
25-9
=4,DF=3,EF=
16-9
=
7

∴GF=
7
2

球半径DG=
7
4
+9
=
43
2

∴外接球的表面积为4π×DG2=43π,
故答案为:43π.
点评:本题考查球的内接几何体,球的表面积的求法,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(x2-
1
x
12的展开式的常数项是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sin(3x+
π
4
).
(1)求函数的周期及对称轴方程;
(2)求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex-ax-1(e为自然对数的底数),a>0.
(Ⅰ)若函数f(x)恰有一个零点,证明:aa=ea-1
(Ⅱ)若f(x)≥0对任意x∈R恒成立,求实数a的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x2+a
x
,且f(1)=2,
(1)求函数的定义域及a的值;
(2)证明f(x)在(1,+∞)上是增函数;
(3)求函数f(x)在[2,5]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

重庆实验外国语学校高二年级将从个班推选出来的6个男生,5个女生中任选3人组建“重外学生文明督察岗”,则下列事件中互斥不对立的事件是(  )
A、“3个都是男生”和“至多1个女生”
B、“至少有2个男生”和“至少两个女生”
C、“恰有2个女生”和“恰有1个或3个男生”
D、“至少有2个女生”和“恰有2个男生”

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集U={x|-x2+3x-2≤0},集合A={x||x-2|>1},集合B={x|
(x-1)
(x-2)
≥0}求:
(1)A∩B
(2)A∪B  
(3)A∩∁UB  
(4)∁UA∪B.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:(x+3)2+(y-4)2=4
(1)若直线l1过点A(-1,0),且与圆C相切,求直线l1的方程;
(2)若圆D的半径为1,圆心D在直线l2:x+y-2=0上,且与圆C内切,求圆D的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sinx,cosx),
b
=(sinx,sinx),
c
=(-1,0).
(Ⅰ)若x=
π
3
,求向量
a
c
的夹角;
(Ⅱ)求函数f(x)=2
a
b
+1的最值以及相应的x值的集合.

查看答案和解析>>

同步练习册答案