精英家教网 > 高中数学 > 题目详情
已知函数 f(x)=a•sin(πx+θ)+b•cos(πx+θ)+4,若f(2004)=3,则 f(2005)=   
【答案】分析:把函数f(x)的解析式的前两项提取,设cosα=,sinα=,根据两角和的正弦函数公式化为一个角的正弦函数,找出ω的值,代入周期公式T=求出f(x)的周期,由求出的周期可得f(2004)与f(0)相等,把x=0代入f(x)的解析式,得到一个关系式,再由周期可得所求式子与f(1)相等,把x=1代入f(x)解析式,变形后,把得到的关系式整体代入可得f(1)的值,即为所求式子的值.
解答:解:函数f(x)=a•sin(πx+θ)+b•cos(πx+θ)+4
=sin(πx+θ+α)+4,(cosα=,sinα=),
∵ω=π,∴T==2,
又f(2004)=f(0)=3,即f(0)=asinθ+bcosθ+4=3,
所以asinθ+bcosθ=-1,
则f(2005)=f(1+1002×2)=f(1)=a•sin(π+θ)+b•cos(π+θ)+4
=-(asinθ+bcosθ)+4=-(-1)+4=5.
故答案为:5
点评:此题考查了三角函数的周期性及其求法,涉及的知识有三角函数的定义,诱导公式,两角和与差的正弦函数,以及函数周期性的应用,其中根据三角函数的恒等变形把f(x)的解析式化为一个角的正弦函数是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案