精英家教网 > 高中数学 > 题目详情

A.对任意恒成立,则满足________.

B.在极坐标系中,点到直线的距离是_______.

C.如图,点P在圆O直径AB的延长线上,且PB=OB=2, PC切圆O于点C,CD⊥AB于点D,则CD=________.

 

【答案】

【解析】

试题分析:A根据绝对值的几何意义可知的最小值为5,所以只需满足

B点化为直角坐标为,直线化为,所以距离

C连接OC,所以OC⊥PC

考点:不等式,极坐标及平面几何求解

点评:解绝对值不等式时要注意绝对值的几何意义的应用,极坐标方程与直角坐标方程的互化关系如下

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=ax-(1+a2)x2,其中a>0,区间I={x|f(x)>0}.
(1)当a在(0,+∞)变化时,求I的长度的最大值(注:区间(α,β)的长度定义为β-α);
(2)给定一个正数k,当a在[k,1+2k]变化时,I长度的最小值为
5
26
,求k的值;
(3)若f(x+1)+f(x)≤
2
3
f(1)对任意x恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

与命题“函数y=
ax2+bx+c
的定义域为R”等价的命题不是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(λcosα,λsinα)(λ≠0),B(
1
2
,-
3
2
)
,O为坐标原点,
(1)若α=
π
6
时,不等式|
AB
|≥2|
OB
|
有解,求实数λ的取值范围;
(2)若|
AB
|≥2|
OB
|
对任意实数α恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010-2011年山东省高二下学期期中考试数学试卷(A) 题型:解答题

((本小题满分14分)

已知。 

(1)若函数为奇函数,求实数的值;

(2)若函数在区间上是增函数,求实数的值组成的集合A;

(3)设关于的方程的两个非零实根为,试问:是否存在实数,使得不等式对任意恒成立?若存在,求的取值范围;若不存在,请说明理由。

 

查看答案和解析>>

同步练习册答案