精英家教网 > 高中数学 > 题目详情
对于定义域为A的函数f(x),如果任意的x1x2A,当x1x2时,都有f(x1)<f(x2),则称函数f(x)是A上的严格增函数;函数f(k)是定义在N*上,函数值也在N*中的严格增函数,并且满足条件f(f(k))=3k.
(1)证明:f(3k)=3f(k);
(2)求f(3k-1)(k∈N*)的值;
(3)是否存在p个连续的自然数,使得它们的函数值依次也是连续的自然数;若存在,找出所有的p值,若不存在,请说明理由.
(1)见解析(2)2×3k-1(k∈N*)(3)存在p=3k-1+1
(1)证明:对k∈N*f(f(k))=3k,∴f[f(f(k))]=f(3k)①
由已知f(f(k))=3k,∴f[f(f(k))]=3f(k),②
由①、②∴f(3k)=3f(k)
(2)若f(1)=1,由已知f(f(k))=3kf(1)=3,矛盾;
f(1)=a>1,∴f(f(1))=f(a)=3,③
f(k)严格递增,即1<af(1)<f(a)=3,
f(1)=2,
由③f(f(1))=f(a)=3,故f(f(1))=f(2)=3.
f(1)=2,f(2)=3.
f(3)=3f(1)=6,f(6)=f(3·2)=3f(2)=9,
f(9)=3f(3)=18,f(18)=3f(6)=27,
f(27)=3f(9)=54,f(54)=3f(18)=81.
依此类推归纳猜出:f(3k-1)=2×3k-1(k∈N*).
下面用数学归纳法证明:
(1)当k=1时,显然成立;
(2)假设当kl(l≥1)时成立,即f(3l-1)=2×3l-1
那么当kl+1时,f(3l)=f(3×3l-1)=3f(3l-1)=3×2×3l-1=2·3l.猜想成立,由(1)、(2)所证可知,对k∈N*f(3k-1)=2×3k-1成立.
(3)存在p=3k-1+1,当p个连续自然数从3k-1→2×3k-1时,函数值正好也是p个连续自然数从f(3k-1)=2×3k-1f(2×3k-1)=3k.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知二次函数f(x)=x2+(2a-1)x+1-2a.
(1)判断命题“对于任意的a∈R(R为实数集),方程f(x)=1必有实数根”的真假,并写出判断过程.
(2)若y=f(x)在区间(-1,0)及(0,)内各有一个零点,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

某辆汽车购买时的费用是15万元,每年使用的保险费、路桥费、汽油费等约为1.5万元.年维修保养费用第一年3 000元,以后逐年递增3 000元,则这辆汽车报废的最佳年限(即使用多少年的年平均费用最少)是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

对于任意x∈[1,2],都有(ax+1)2≤4成立,则实数a的取值范围为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设函数f(x)=-x3+3x+2,若不等式f(3+2sin θ)<m对任意θ∈R恒成立,则实数m的取值范围为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某分公司经销某种品牌产品,每件产品的成本为3元,并且每件产品需向总公司交a元(3≤a≤5)的管理费,预计当每件产品的售价为x元(9≤x≤11)时,一年的销售量为(12-x)2万件.
(1)求分公司一年的利润L(万元)与每件产品的售价x的函数关系式;
(2)当每件产品的售价为多少元时,分公司一年的利润L最大?并求出L的最大值Q(a).

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若函数f(x)=x2+2xa没有零点,则实数a的取值范围是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

根据下表,用二分法求函数在区间上的零点的近似值(精确度)是                  






查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数,若恒成立,则实数a的取值范围是(   )
A.B.
C.D.

查看答案和解析>>

同步练习册答案