精英家教网 > 高中数学 > 题目详情

若双曲线=1(b>0)的一条准线恰好为圆x2+y2+2x=0的一条切线,则b的值是(    )

A.4      B.4         C.8         D.4

A


解析:

由题意知双曲线=1的左准线x=-为圆(x+1)2+y2=1的一条切线.

∴-=-2(b>0).解之,得b=4.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•宿州一模)已知斜率为1的直线l与双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)
相交于B、D两点,且BD的中点为M(1,3).
(1)求双曲线C的离心率;
(2)若双曲线C的右焦点坐标为(3,0),则以双曲线的焦点为焦点,过直线g:x-y+9=0上一点M作椭圆,要使所作椭圆的长轴最短,点M应在何处?并求出此时的椭圆方程.

查看答案和解析>>

科目:高中数学 来源:安徽省模拟题 题型:解答题

已知斜率为1的直线l与双曲线相交于B、D两点,且BD的中点为M(1,3).
(1)求双曲线C的离心率;
(2)若双曲线C的右焦点坐标为(3,0),则以双曲线的焦点为焦点,过直线g:x﹣y+9=0上一点M作椭圆,要使所作椭圆的长轴最短,点M应在何处?并求出此时的椭圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A(3,0)及双曲线E:-=1,若双曲线E的右支上的点Q到点B(m,0)(m≥3)距离的最小值为|AB|.?

(1)求m的取值范围,并指出当m变化时点B的轨迹G.

(2)轨迹G上是否存在一点D,它在直线y=x上的射影为P,使得·=·?若存在,试指出双曲线E的右焦点F分向量所成的比;若不存在,请说明理由.

                 

(3)当m为定值时,过轨迹G上的点B(m,0)作一条直线l与双曲线E的右支交于不同的两点,且与直线y=x,y=-x分别交于M,N两点,求△MON周长的最小值.

查看答案和解析>>

科目:高中数学 来源:2012年广东省深圳市宝安区松岗中学高考数学模拟试卷2(理科)(解析版) 题型:解答题

已知斜率为1的直线l与双曲线相交于B、D两点,且BD的中点为M(1,3).
(1)求双曲线C的离心率;
(2)若双曲线C的右焦点坐标为(3,0),则以双曲线的焦点为焦点,过直线g:x-y+9=0上一点M作椭圆,要使所作椭圆的长轴最短,点M应在何处?并求出此时的椭圆方程.

查看答案和解析>>

科目:高中数学 来源:2012年安徽省宿州市高考数学一模试卷(理科)(解析版) 题型:解答题

已知斜率为1的直线l与双曲线相交于B、D两点,且BD的中点为M(1,3).
(1)求双曲线C的离心率;
(2)若双曲线C的右焦点坐标为(3,0),则以双曲线的焦点为焦点,过直线g:x-y+9=0上一点M作椭圆,要使所作椭圆的长轴最短,点M应在何处?并求出此时的椭圆方程.

查看答案和解析>>

同步练习册答案