精英家教网 > 高中数学 > 题目详情

(本小题满分14分)已知的图像在点处的切线与直线平行.
⑴ 求满足的关系式;
⑵ 若上恒成立,求的取值范围;
⑶ 证明:

(1);(2)的取值范围是 ;(3)见解析。

解析试题分析:(Ⅰ)求导函数,利用图象在点(1,f(1))处的切线与直线y=2x+1平行,可得f′(1)=a-b=2,即可求a,b满足的关系式;
(Ⅱ)由(Ⅰ)知,构造新函数g(x)=f(x)-2lnx=-2lnx,x∈[1,+∞)则根据g(1)=0,g′(x),比较对应方程根的大小,进行分类讨论,即可求得a的取值范围;
(1),根据题意,即 ………3分
(2)由(1)知,,………4分

=  ………5分
①当时, ,
,则为减函数,存在
上不恒成立.                   ………6分
时,,当时,增函数,又
,∴恒成立.………7分
综上所述,所求的取值范围是 …………8分
(3)由(2)知当时,上恒成立.取
, 
 ……10分
  
  
 ………11分
上式中令n=1,2,3,…,n,并注意到:
然后n个不等式相加得到 ………14分
考点:本试题主要考查了导数知识的运用,考查恒成立问题,考查不等式的证明。属于中档试题。
点评:解决该试题的关键是正确求出导函数,构造新函数,利用函数的单调性解题,这是解决一般不等式恒成立问题的常用的方法,也是比较重要的方法。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题满分14分)设为非负实数,函数
(Ⅰ)当时,求函数的单调区间;
(Ⅱ)讨论函数的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数定义域为,若对于任意的,都有,且时,有.
(1)求证: 为奇函数;
(2)求证: 上为单调递增函数;
(3)设,若<,对所有恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知 
(1)求的最小值;  
(2)求的值域。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知二次函数满足以下两个条件:
①不等式的解集是(-2,0)  ②函数上的最小值是3 
(Ⅰ)求的解析式;
 (Ⅱ)若点在函数的图象上,且
(ⅰ)求证:数列为等比数列
(ⅱ)令,是否存在正实数,使不等式对于一切的恒成立?若存在,指出的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数
(1)若的定义域为R,求实数的取值范围.
(2)若的定义域为[-2,1],求实数的值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分)定义运算:
(1)若已知,解关于的不等式
(2)若已知,对任意,都有,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)
用定义法证明:函数在(1,+∞)上是减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)判断函数的奇偶性,并加以证明;
(2)用定义证明上是减函数;
(3)函数上是单调增函数还是单调减函数?(直接写出答案,不要求写证明过程).

查看答案和解析>>

同步练习册答案