精英家教网 > 高中数学 > 题目详情
设函数f(x)=x3-3ax+b(a≠0).
(Ⅰ)若曲线y=f(x)在点(2,f(2))处与直线y=8相切,求a,b的值;
(Ⅱ)求函数f(x)的单调区间与极值点.
(Ⅰ)f′(x)=3x2-3a,
∵曲线y=f(x)在点(2,f(2))处与直线y=8相切,
f(2)=0
f(2)=8
3(4-a)=0
8-6a+b=8
a=4
b=24.


(Ⅱ)∵f′(x)=3(x2-a)(a≠0),
当a<0时,f′(x)>0,函数f(x)在(-∞,+∞)上单调递增,此时函数f(x)没有极值点.
当a>0时,由f(x)=0⇒x=±
a

x∈(-∞,-
a
)
时,f′(x)>0,函数f(x)单调递增,
x∈(-
a
a
)
时,f′(x)<0,函数f(x)单调递减,
x∈(
a
,+∞)
时,f′(x)>0,函数f(x)单调递增,
∴此时x=-
a
是f(x)的极大值点,x=
a
是f(x)的极小值点.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

求函数f(x)=x5+5x4+5x3+1在区间[-1,4]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,A,B是函数y=ax(a>1)在y轴右侧图象上的两点,分别过A,B作y轴的垂线与y轴交于E,F两点,与函数y=ex的图象交于C,D两点,且A是CE的中点.
(Ⅰ)求a的值;
(Ⅱ)当直线BC与y轴平行时,设B点的横坐标为x,四边形ABDC的面积为f(x),求f(x)的解析式;
(Ⅲ)若对任意的正数b,关于x的不等式
2f(x)
ex-1
3exln
xb
em
在区间[1,e]上恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x2-(2a+1)x+alnx.
(Ⅰ)当a=1时,求函数f(x)的单调增区间;
(Ⅱ)求函数f(x)在区间[1,e]上的最小值;
(Ⅲ)设g(x)=(1-a)x,若存在x0∈[
1
e
,e]
,使得f(x0)≥g(x0)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ax2+1(a>0),g(x)=x3+bx
(1)若曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处具有公共切线,求a、b的值;
(2)当a2=4b时,求函数f(x)+g(x)的单调区间,并求其在区间(-∞,-1)上的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=
1
3
x3-
1
2
(2a-1)x2+[a2-a-f′(a)]x+b,(a,b∈
R)
(1)求f′(a)的值;
(2)若对任意的a∈[0,1],函数f(x)在x∈[0,1]上的最小值恒大于1,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

由直线及曲线所围成的封闭的图形的面积为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

等于(    )
A.B.2C.-2D.+2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若 ,则s1,s2,s3的大小关系为(    )
A.s1<s2<s3B.s2<s1<s3C.s2<s3<s1D.s3<s2<s1

查看答案和解析>>

同步练习册答案