精英家教网 > 高中数学 > 题目详情
15.已知定义域为R的奇函数f(x)的导函数为f′(x),当x≠0时,f'(x)+$\frac{f(x)}{x}$>0,若a=$\frac{1}{2}f(\frac{1}{2})\;\;b=-2f(-2)\;\;c=ln2•f(ln2)$,则下列关于a,b,c的大小关系正确的是(  )
A.a>b>cB.a>c>bC.c>b>aD.b>c>a

分析 令g(x)=xf(x),则g′(x)=f(x)+xf′(x).由于当x≠0时,f′(x)+$\frac{f(x)}{x}$>0,可得:当x>0时,xf′(x)+f(x)>0.即当x>0时,g′(x)>0,因此当x>0时,函数g(x)单调递增,然后利用函数g(x)的单调性得答案.

解答 解:令g(x)=xf(x),则g′(x)=f(x)+xf′(x).
∵当x≠0时,f′(x)+$\frac{f(x)}{x}$>0,
∴当x>0时,xf′(x)+f(x)>0.
即当x>0时,g′(x)>0,
因此当x>0时,函数g(x)单调递增.
∵函数f(x)为奇函数,∴b=-2f(-2)=2f(2),
又c=ln2f(ln2),
∵2>ln2>$\frac{1}{2}$,
∴g(2)>g(ln2)>g($\frac{1}{2}$),
即b>c>a.
故选:D.

点评 本题考查了函数的单调性与导数的关系,训练了构造函数法比较大小,考查了推理能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知等差数列{an}的前n项和为Sn,若$\overrightarrow{OP}={a_{1007}}\overrightarrow{OA}+\frac{1}{2}\overrightarrow{OB}+{a_{1008}}\overrightarrow{OC}$且P,A,B,C四点共面(该面不过点O),则S2014=(  )
A.503B.$\frac{1007}{2}$C.1006D.1007

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}满足a1=2,an=2an-1+2(n≥2),令bn=an+2.
(1)证明{bn}是等比数列;
(2)令cn=$\frac{{{log}_{2}b}_{n}}{{b}_{n}}$,Tn是数列{cn}的前n项和,若对任意的正数a,b,不等式5a2+4b2≥a(a+b)($\frac{3}{2}-T$n)2n恒成立,求n的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知奇函数y=f(x)在定义域R上是单调减函数,且f(a+1)+f(2a)>0,则a的取值范围是(-∞,-$\frac{1}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若直线x+(a-1)y+1=0与直线ax+2y+2=0垂直,则实数a的值为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.截止1999年底,我国人口约13亿,如果今后能将人口年平均增长率控制在1%,那么到2020年底,我国的人口数最多为多少亿?(  )
A.13+20×13×1%B.13+21×13×1%C.13×(1+1%)20D.13×(1+1%)21

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,AB是圆O的直径,C是圆O上异于A、B的一个动点,DC垂直于圆O所在的平面,DC∥EB,DC=EB=1,AB=4.
(1)求证:DE⊥平面ACD;
(2)若AC=BC,求平面AED与平面ABE所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知集合A={x|x2-2x=0},B={0,1,2},则A∩B={0,2}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.曲线C是平面内与两个定点F1(-1,0)和F2(1,0)的距离的积等于常数a(a>1)的点的轨迹,给出下列四个结论:
①曲线C关于坐标轴对称;
②曲线C过点$(0,\sqrt{a-1})$;
③若点P在曲线C上(不在x轴上),则△PF1F2的面积不大于$\frac{1}{2}a$.
其中,所有正确结论的序号是①②③.

查看答案和解析>>

同步练习册答案