精英家教网 > 高中数学 > 题目详情
5.已知等差数列{an}的前n项和为Sn,若$\overrightarrow{OP}={a_{1007}}\overrightarrow{OA}+\frac{1}{2}\overrightarrow{OB}+{a_{1008}}\overrightarrow{OC}$且P,A,B,C四点共面(该面不过点O),则S2014=(  )
A.503B.$\frac{1007}{2}$C.1006D.1007

分析 根据向量的共面定理,得出a1007+$\frac{1}{2}$+a1008=1,再求等差数列的前n项和S2014的值.

解答 解:根据向量的共面定理,得;
当$\overrightarrow{OP}={a_{1007}}\overrightarrow{OA}+\frac{1}{2}\overrightarrow{OB}+{a_{1008}}\overrightarrow{OC}$时,
a1007+$\frac{1}{2}$+a1008=1,
∴a1007+a1008=$\frac{1}{2}$;
∴等差数列{an}的前n项和
S2014=$\frac{2014{(a}_{1}{+a}_{2014})}{2}$
=1007•(a1007+a1008
=1007×$\frac{1}{2}$
=$\frac{1007}{2}$.
故选:B.

点评 本题考查了空间向量的基本定理与等差数列前n项和公式的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.函数f(x)=x2+2x+$\frac{1}{x}$,x∈[-2,-1]的值域是$[-2,-\frac{1}{2}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.过点P(4,2)作圆O:x2+y2=42的弦AB,设弦AB的中点为M,令M的坐标为(x,y),则x和y满足的关系式为(x-2)2+(y-1)2=5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知矩形ABCD中,$AB=\sqrt{2}$,BC=1,则$\overrightarrow{AC}•\overrightarrow{DB}$=(  )
A.1B.-1C.$\sqrt{6}$D.$2\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.曲线:$y=\sqrt{1-{x^2}}$与直线y=x+b恰有1个公共点,则b的取值范围为[-1,1)∪{$\sqrt{2}$}..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知f(x)是定义在[-2,2]上的偶函数,当x∈[0,2]时,f(x)=x2+4x+1
(1)用定义证明f(x)在区间[0,2]上是单调递增函数;
(2)解不等式f(x)>f(1-x).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)对任意a,b∈R,都有f(a+b)=f(a)+f(b)-3,并且当x>0时,f(x)>3.
(1)求证:f(x)是R上的增函数.
(2)若f(4)=2,解不等式f(3m2-m-2)>$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在一次抽奖活动中,有甲、乙等6人获得抽奖的机会.抽奖规则如下:主办方先从6人中随机抽取两人均获奖1000元,再从余下的4人中随机抽取1人获奖600元,最后还从这4人中随机抽取1人获奖400元.
(1)求甲和乙都不获奖的概率;
(2)设X是甲获奖的金额,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知定义域为R的奇函数f(x)的导函数为f′(x),当x≠0时,f'(x)+$\frac{f(x)}{x}$>0,若a=$\frac{1}{2}f(\frac{1}{2})\;\;b=-2f(-2)\;\;c=ln2•f(ln2)$,则下列关于a,b,c的大小关系正确的是(  )
A.a>b>cB.a>c>bC.c>b>aD.b>c>a

查看答案和解析>>

同步练习册答案