精英家教网 > 高中数学 > 题目详情

已知函数,若上恒成立,求的取值范围.

 

【答案】

 

         则

        (i)当

            若 ,则是减函数,所以 

,故上恒不成立。

(ii)时, 

,故当时,

综上所述,所求的取值范围为

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=-x3+ax2+b(a、b∈R).
(I)若函数f(x)在x=0,x=4处取得极值,且极小值为-1,求f(x)的解析式;
(II)若x∈[0,1],函数f(x)图象上的任意一点的切线斜率为k,当k≥-1恒成立时,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex-a(x-1),x∈R,其中a为实数.
(1)若实数a>0,求函数f(x)在(0,+∞)上的极值.
(2)记函数g(x)f(2x),设函数y=g(x)的图象C与y轴交于P点,曲线C在P点处的切线与两坐标轴所围成的图形的面积为S(a),当a>1时,求S(a)的最小值;
(3)当x∈(0,+∞)时,不等式f(x)+f′(x)+x3-2x2≥0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)满足f(x)+f'(0)-e-x=-1,函数g(x)=-λlnf(x)+sinx是区间[-1,1]上的减函数.
(1)当x≥0时,曲线y=f(x)在点M(t,f(t))的切线与x轴、y轴围成的三角形面积为S(t),求S(t)的最大值;
(2)若g(x)<t2+λt+1在x∈[-1,1]时恒成立,求t的取值范围;
(3)设函数h(x)=-lnf(x)-ln(x+m),常数m∈Z,且m>1,试判定函数h(x)在区间[e-m-m,e2m-m]内的零点个数,并作出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=asinx+acosx+1-a,a∈R,x∈[0,
π
2
]

(I)求f(x)的对称轴方程;
(II)若f(x)的最大值为
2
,求a的值及此时对应x的值;
(III)若定义在非零实数集上的奇函数g(x)在(0,+∞)上是增函数,且g(2)=0,求当g[f(x)]<0恒成立时,实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+ax2+b(a,b∈R)
(1)若函数f(x)在x=0,x=2处取得极值,且极小值为-2,求a,b的值.
(2)若x∈[0,1],函数f(x)在图象上任意一点的切线的斜率为k,求k≤1恒成立时a的取值范围.

查看答案和解析>>

同步练习册答案