分析 根据函数为定义在[-2,2]上的奇函数,将已知不等式移项整理可得f(1-m)>f(m).再由f(x)在区间[0,2]上的单调性得到在[-2,2]上是减函数,由此建立关于m的不等式组并解之,即可得到实数m的取值范围.
解答 解:由f(m)+f(m-1)<0,移项得f(m)<-f(m-1),
∵f(x)是定义在[-2,2]上的奇函数
∴-f(m-1)=f(1-m),不等式化成f(1-m)>f(m).?(4分)
又∵f(x)在[0,2]上为减函数,且f(x)在[-2,2]上为奇函数,
∴f(x)在[-2,2]上为减函数.(6分)
因此,$\left\{\begin{array}{l}{1-m<m}\\{-2≤1-m≤2}\\{-2≤m≤2}\end{array}\right.$,解之得$({\frac{1}{2},2}]$.
综上所述,可得m的取值范围为$({\frac{1}{2},2}]$.
点评 本题给出抽象函数的单调性和奇偶性,求解关于m的不等式,着重考查了函数的单调性、奇偶性和抽象函数的理解等知识,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | {x|x≥-1或x≤-2} | B. | {x|-2≤x≤-1} | C. | {x|1≤x≤2} | D. | {x|x≥-1或x<-2} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [4,+∞) | B. | (0,$\frac{5}{2}$) | C. | [$\frac{5}{2}$,4] | D. | [$\frac{5}{2}$,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com