精英家教网 > 高中数学 > 题目详情
在正方体ABCD—A1B1C1D1中,点M、N分别在AB1、BC1上,且,则下列结论①;②;③MN//平面A1B1C1D1;④中,正确命题的个数是                (   )
A.4B.3 C.2D.1
C
先把点M,N放入与平面A1B1C1D1平行的平面GFEH中,利用线面垂直的性质判断①正确,利用平行公理判断②错误,利用面面平行的性质判断③正确,利用面面平行以及线线垂直的性质判断④错误,就可得到结论.
解答:解;在正方体ABCD-A1B1C1D1的四条棱A1A,B1B,C1C,D1D上分别取点G,F,E,H四点,

使AG=A1A,BF=B1B,CE=C1C,DH=D1D,连接GF,FE,EH,HG,
∵点M、N分别在AB1、BC1上,且AM=AB1,BN=BC1
∴M在线段GF上,N点在线段FE上.且四边形GFEH为正方形,平面GFEH∥平面A1B1C1D1
∵AA1⊥平面A1B1C1D1,∴AA1⊥平面GFEH,∵MN?平面GFEH,∴AA1⊥MN,∴①正确.
∵A1C1∥GE,而GE与MN不平行,∴A1C1与MN不平行,∴②错误.
∵平面GFEH∥平面A1B1C1D1,MN?平面GFEH,∴MN∥平面A1B1C1D1,∴③正确.
∵B1D1⊥FH,FH?平面GFEH,MN?平面GFEH,B1D1?平面A1B1C1D1,平面GFEH∥平面A1B1C1D1
且MN与FH不平行,∴B1D1不可能垂直于MN,∴④错误
∴正确命题只有①③
故选C
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本大题共12分)
如图  为正方体,一只青蛙开始在顶点A处,它每次可随意跳到相邻三顶点之一,若在五次内跳到点,则停止跳动;若5次内不能跳到点,跳完五次也停止跳动,求:

(1)5次以内能到点的跳法有多少种?
(2)从开始到停止,可能出现的跳法有多少种?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
已知,在水平平面上有一长方体旋转得到如图所示的几何体.

(Ⅰ)证明:平面平面
(Ⅱ)当时,直线与平面所成的角的正弦值为,求的长度;
(Ⅲ)在(Ⅱ)条件下,设旋转过程中,平面与平面所成的角为长方体的最高点离平面的距离为,请直接写出的一个表达式,并注明定义域.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,四棱锥的底面为一直角梯形,其中
底面的中点.

(1)求证://平面
(2)若平面,求异面直线所成角的余弦值;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图1,在平面内,ABCD边长为2的正方形,都是正方形。将两个正方形分别沿ADCD起,使重合于点D1。设直线l过点B且垂直于正方形ABCD所在的平面,点E是直线l上的一个动点,且与点D1位于平面ABCD同侧,设(图2)。

(1)设二面角EACD1的大小为q,当时,求的余弦值;
(2)当时在线段上是否存在点,使平面平面,若存在,求出所成的比;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(、(8分)如图,在底面是直角梯形的四棱锥S-ABCD中,


(1)求四棱锥S-ABCD的体积;
(2)求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

.如图,在三棱锥A—BCD中,已知侧面ABD底面BCD,若,则侧棱AB与底面BCD所 成的角为            .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在底面为正方形的四棱锥V-ABCD中,侧棱VA垂直于底面ABCD,且VA=AB,点M
为VA的中点,则直线VC与平面MBC所成角的正弦值是                 (   )
A                 B             C               D

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

、如图在正三棱锥P-ABC中,E、F分别是PA,AB的中点,∠CEF=90°,若AB=a,则该三棱锥的全面积为
A.B.C.D.

查看答案和解析>>

同步练习册答案