【题目】已知抛物线
的焦点也是椭圆
的一个焦点,点
在椭圆短轴
上,且
.
(1)求椭圆
的方程;
(2)设
为椭圆
上的一个不在
轴上的动点,
为坐标原点,过椭圆的右焦点
作
的平行线,交曲线
于
两点,求
面积的最大值.
科目:高中数学 来源: 题型:
【题目】△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为
(1)求sinBsinC;
(2)若6cosBcosC=1,a=3,求△ABC的周长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,点
为椭圆上一点.
(1)求椭圆C的方程;
(2)已知两条互相垂直的直线
,
经过椭圆
的右焦点
,与椭圆
交于
四点,求四边形
面积的的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,曲线
的参数方程为
(
,
为参数),以坐标原点
为极点,
轴正半轴为极轴建立极坐标系,直线
的极坐标方程为
,若直线
与曲线
相切;
(1)求曲线
的极坐标方程与直线
的直角坐标方程;
(2)在曲线
上取两点
,
与原点
构成
,且满足
,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】按照我国《机动车交通事故责任强制保险条例》规定,交强险是车主必须为机动车购买的险种,若普通7座以下私家车投保交强险第一年的费用(基准保费)统一为
元,在下一年续保时,实行的是保费浮动机制,保费与上一、二、三个年度车辆发生道路交通事故的情况相关联,发生交通事故的次数越多,费率也就越高,具体浮动情况如下表:
交强险浮动因素和浮动费率比率表 | ||
投保类型 | 浮动因素 | 浮动比率 |
| 上一个年度未发生有责任道路交通事故 | 下浮10% |
| 上两个年度未发生有责任道路交通事故 | 下浮20% |
| 上三个及以上年度未发生有责任道路交通事故 | 下浮30% |
| 上一个年度发生一次有责任不涉及死亡的道路交通事故 | 0% |
| 上一个年度发生两次及两次以上有责任不涉及死亡的道路交通事故 | 上浮10% |
| 上一个年度发生有责任道路交通死亡事故 | 上浮30% |
某机构为了研究某一品牌普通7座以下私家车的投保情况,随机抽取了80辆车龄已满三年的该品牌同型号私家车在下一年续保时的情况,统计得到了下面的表格:
类型 |
|
|
|
|
|
|
数量 | 20 | 10 | 10 | 20 | 15 | 5 |
(1)根据上述样本数据,估计一辆普通7座以下私家车(车龄已满3年)在下一年续保时,保费高于基准保费的概率;
(2)某销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基准保费的车辆记为事故车.
①若该销售商部门店内现有6辆该品牌二手车(车龄已满3年),其中两辆事故车,四辆非事故车.某顾客在店内随机挑选两辆车,求这两辆车中恰好有一辆事故车的概率;
②以这80辆该品牌车的投保类型的频率代替一辆车投保类型的概率.该销售商一次购进120辆(车龄已满三年)该品牌二手车,若购进一辆事故车亏损4000元,一辆非事故车盈利8000元.试估计这批二手车一辆车获得利润的平均值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某跨国饮料公司在对全世界所有人均GDP(即人均纯收入)在
千美元的地区销售该公司A饮料的情况调查时发现:该饮料在人均GDP处于中等的地区销售量最多,然后向两边递减.
(1)下列几个模拟函数:①
;②
;③
;④
(x表示人均GDP,单位:千美元,y表示年人均A饮料的销售量,单位:L).用哪个模拟函数来描述人均A饮料销售量与地区的人均GDP关系更合适?说明理由;
(2)若人均GDP为1千美元时,年人均A饮料的销售量为
,人均
为4千美元时,年人均A饮料的销售量为
,把(1)中你所选的模拟函数求出来,并求出各个地区年人均A饮料的销售量最多是多少.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】北京101中学校园内有一个“少年湖”,湖的两侧有一个音乐教室和一个图书馆,如图,若设音乐教室在A处,图书馆在B处,为测量A,B两地之间的距离,某同学选定了与A,B不共线的C处,构成△ABC,以下是测量的数据的不同方案:①测量∠A,AC,BC;②测量∠A,∠B,BC;③测量∠C,AC,BC;④测量∠A,∠C,∠B. 其中一定能唯一确定A,B两地之间的距离的所有方案的序号是_______.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成
两组,每组100只,其中
组小鼠给服甲离子溶液,
组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:
![]()
记
为事件:“乙离子残留在体内的百分比不低于
”,根据直方图得到
的估计值为
.
(1)求乙离子残留百分比直方图中
的值;
(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com