¸ø³öÏÂÃæÀà±ÈÍÆÀíÃüÌ⣨QΪÓÐÀíÊý¼¯£¬RΪʵÊý¼¯£¬CΪ¸´Êý¼¯£©£º¢Ù¡°Èôa£¬b¡ÊR£¬Ôòa-b=0?a=b¡±Àà±ÈÍÆ³ö¡°Èôa£¬b¡ÊC£¬Ôòa-b=0?a=b¡±£»¢Ú¡°Èôa£¬b£¬c£¬d¡ÊR£¬Ôò¸´Êýa+bi=c+di?a=c£¬b=d¡±Àà±ÈÍÆ³ö¡°Èôa£¬b£¬c£¬d¡ÊQ£¬ÔòÊýѧ¹«Ê½?a=c£¬b=d¡±£»¢Û¡°Èôa£¬b¡ÊR£¬Ôòa-b£¾0?a£¾b¡±Àà±ÈÍÆ³ö¡°Èôa£¬b¡ÊC£¬Ôòa-b£¾0?a£¾b¡±¢Ü¡°Èôx¡ÊR£¬Ôò|x|£¼1?-1£¼x£¼1¡±Àà±ÈÍÆ³ö¡°Èôz¡ÊC£¬Ôò|z|£¼1?-1£¼z£¼1¡±£®ÆäÖÐÀà±È½áÂÛÕýÈ·µÄÃüÌâÊÇ________£®

¢Ù¢Ú
·ÖÎö£ºÔÚÊý¼¯µÄÀ©Õ¹¹ý³ÌÖУ¬ÓÐЩÐÔÖÊÊÇ¿ÉÒÔ´«µÝµÄ£¬µ«ÓÐЩÐÔÖʲ»ÄÜ´«µÝ£¬Òò´Ë£¬ÒªÅжÏÀà±ÈµÄ½á¹ûÊÇ·ñÕýÈ·£¬¹Ø¼üÊÇÒªÔÚеÄÊý¼¯Àï½øÐÐÂÛÖ¤£¬µ±È»ÒªÏëÖ¤Ã÷Ò»¸ö½áÂÛÊÇ´íÎóµÄ£¬Ò²¿ÉÖ±½Ó¾ÙÒ»¸ö·´Àý£¬ÒªÏëµÃµ½±¾ÌâµÄÕýÈ·´ð°¸£¬¿É¶Ô4¸ö½áÂÛÖðÒ»½øÐзÖÎö£¬²»Äѽâ´ð£®
½â´ð£º¢ÙÔÚ¸´Êý¼¯CÖУ¬ÈôÁ½¸ö¸´ÊýÂú×ãa-b=0£¬ÔòËüÃǵÄʵ²¿ºÍÐ鲿¾ùÏàµÈ£¬Ôòa£¬bÏàµÈ£®¹Ê¢ÙÕýÈ·£»
¢ÚÔÚÓÐÀíÊý¼¯QÖУ¬Èô £¬Ôò£¨a-c£©+£¨b-d£©=0£¬Ò׵ãºa=c£¬b=d£®¹Ê¢ÚÕýÈ·£»
¢ÛÈôa£¬b¡ÊC£¬µ±a=1+i£¬b=iʱ£¬a-b=1£¾0£¬µ«a£¬b ÊÇÁ½¸öÐéÊý£¬²»ÄܱȽϴóС£®¹Ê¢Û´íÎó
¢Ü¡°Èôx¡ÊR£¬Ôò|x|£¼1?-1£¼x£¼1¡±Àà±ÈÍÆ³ö¡°Èôx¡ÊC£¬|z|£¼1±íʾ¸´ÊýģСÓÚ1£¬²»ÄÜ?-1£¼z£¼1£¬¹Ê¢Ü´í£®
¹Ê4¸ö½áÂÛÖУ¬¢Ù¢ÚÊÇÕýÈ·µÄ£®
¹Ê´ð°¸Îª£º¢Ù¢Ú£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÁËÀà±ÈÍÆÀí£®Àà±ÈÍÆÀíµÄÒ»°ã²½ÖèÊÇ£º£¨1£©ÕÒ³öÁ½ÀàÊÂÎïÖ®¼äµÄÏàËÆÐÔ»òÒ»ÖÂÐÔ£»£¨2£©ÓÃÒ»ÀàÊÂÎïµÄÐÔÖÊÈ¥ÍÆ²âÁíÒ»ÀàÊÂÎïµÄÐÔÖÊ£¬µÃ³öÒ»¸öÃ÷È·µÄÃüÌ⣨²ÂÏ룩£®µ«Àà±ÈÍÆÀíµÄ½áÂÛ²»Ò»¶¨ÕýÈ·£¬»¹ÐèÒª¾­¹ýÖ¤Ã÷£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¸ø³öÏÂÃæÀà±ÈÍÆÀíÃüÌ⣨ÆäÖÐQΪÓÐÀíÊý¼¯£¬RΪʵÊý¼¯£¬CΪ¸´Êý¼¯£©
¢Ù¡°Èôa£¬b¡ÊR£¬Ôòa-b=0?a=b¡±Àà±ÈÍÆ³ö¡°Èôa£¬b¡ÊC£¬Ôòa-b=0?a=b¡±£»
¢Ú¡°Èôa£¬b£¬c£¬d¡ÊR£¬Ôò¸´Êýa+bi=c+di?a=c£¬b=d¡±£¬Àà±ÈÍÆ³ö¡°Èôa£¬b£¬c£¬d¡ÊQ£¬Ôòa+b
2
=c+d
2
?a=c£¬b=d
¡±£»
¢Û¡°Èôa£¬b¡ÊR£¬Ôòa-b£¾0?a£¾b¡±Àà±ÈÍÆ³ö¡°Èôa£¬b¡ÊC£¬Ôòa-b£¾0?a£¾b¡±£»
¢Ü¡°Èôx¡ÊR£¬Ôò|x|£¼1?-1£¼x£¼1¡±Àà±ÈÍÆ³ö¡°Èôx¡ÊC£¬Ôò|z|£¼1?-1£¼z£¼1
ÆäÖÐÀà±È½áÂÛÕýÈ·µÄ¸öÊýÊÇ£¨¡¡¡¡£©
A¡¢1B¡¢2C¡¢3D¡¢4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¸ø³öÏÂÃæÀà±ÈÍÆÀíÃüÌ⣨ÆäÖÐQΪÓÐÀíÊý¼¯£¬RΪʵÊý¼¯£¬CΪ¸´Êý¼¯£©£º
¢Ù¡°Èôa£¬b¡ÊR£¬Ôòa-b=0⇒a=b¡±Àà±ÈÍÆ³ö¡°Èôa£¬b¡ÊC£¬Ôòa-b=0⇒a=b¡±£»
¢Ú¡°Èôa£¬b£¬c£¬d¡ÊR£¬Ôò¸´Êýa+bi=c+di⇒a=c£¬b=d¡±Àà±ÈÍÆ³ö¡°Èôa£¬b£¬c£¬d¡ÊQ£¬Ôò¸´Êýb=d¡±
¢Û¡°Èôa£¬b¡ÊR£¬Ôòa-b£¾0⇒a£¾b¡±Àà±ÈÍÆ³ö¡°Èôa£¬b¡ÊC£¬Ôòa-b£¾0⇒a£¾b¡±
ÆäÖÐÀà±ÈµÃµ½µÄ½áÂÛÕýÈ·µÄ¸öÊýÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¸ø³öÏÂÃæÀà±ÈÍÆÀíÃüÌ⣺
¢Ù¡°Èôa•3=b•3£¬Ôòa=b¡±ÀàÍÆ³ö¡°Èôa•0=b•0£¬Ôòa=b¡±£»
¢Ú¡°Èô£¨a+b£©c=ac+bc¡±ÀàÍÆ³ö¡°
a+b
c
=
a
c
+
b
c
(c¡Ù0)
¡±£»
¢Û¡°£¨ab£©n=anbn¡±ÀàÍÆ³ö¡°£¨a+b£©n=an+bn¡±£»
¢Ü¡°ax+y=ax•ay£¨0£¼a¡Ù1£©¡±ÀàÍÆ³ö¡°loga£¨x+y£©=logax•logay£¨0£¼a¡Ù1£©¡±£®
ÆäÖÐÀà±È½áÂÛÕýÈ·µÄ¸öÊýΪ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¸ø³öÏÂÃæÀà±ÈÍÆÀíÃüÌ⣨ÆäÖÐQΪÓÐÀíÊý¼¯£¬RΪʵÊý¼¯£¬CΪ¸´Êý¼¯£©£¬ÆäÖÐÀà±È½áÂÛÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A¡¢¡°Èôa£¬b¡ÊR£¬Ôòa2+b2=0⇒a=0ÇÒb=0¡±Àà±ÈÍÆ³ö¡°Èôz1£¬z2¡ÊC£¬Ôòz12+z22=0⇒z1=0ÇÒz2=0¡±
B¡¢¡°Èôa£¬b£¬c£¬d¡ÊR£¬Ôò¸´Êýa+bi=c+di⇒a=c£¬b=d¡±Àà±ÈÍÆ³ö¡°Èôa£¬b£¬c£¬d¡ÊQ£¬Ôòa+b
2
=c+d
2
⇒a=c£¬b=d
¡±
C¡¢¡°Èôa£¬b¡ÊR£¬Ôòa-b£¾0⇒a£¾b¡±Àà±ÈÍÆ³ö¡°Èôz1£¬z2¡ÊC£¬Ôòz1-z2£¾0⇒z1£¾z2¡±
D¡¢¡°Èôx¡ÊR£¬Ôò|x|£¼1⇒-1£¼x£¼1¡±Àà±ÈÍÆ³ö¡°Èôz¡ÊC£¬Ôò|z|£¼1⇒-1£¼z£¼1¡±

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¸ø³öÏÂÃæÀà±ÈÍÆÀíÃüÌ⣨ÆäÖÐQΪÓÐÀíÊý¼¯£¬RΪʵÊý¼¯£¬CΪ¸´Êý¼¯£©£º
¢Ù¡°Èôa¡¢b¡ÊR£¬Ôòa-b=0⇒a=b¡±Àà±ÈÍÆ³ö¡°a¡¢£¬b¡ÊC£¬Ôòa-b=0⇒a=b¡±
¢Ú¡°Èôx¡ÊR£¬Ôò|x|£¼1⇒-1£¼x£¼1¡±Àà±ÈÍÆ³ö¡°Èôz¡ÊC£¬Ôò|z|£¼1⇒-1£¼z£¼1¡±
¢Û¡°Èôa¡¢b¡¢¡ÊR£¬Ôòa-b£¾0⇒a£¾b¡±Àà±ÈÍÆ³ö¡°Èôa¡¢b¡ÊC£¬Ôòa-b£¾0⇒a£¾b¡±
ÆäÖÐÀà±È½áÂÛÕýÈ·µÄ¸öÊýÓУ¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸