精英家教网 > 高中数学 > 题目详情

【题目】已知函数的极大值为,其中为自然对数的底数.

1)求实数的值;

2)若函数,对任意,恒成立.

i)求实数的取值范围;

ii)证明:.

【答案】(1)(2)(iii)证明见解析

【解析】

1)求函数定义域,然后对函数求导,根据函数单调性,得出时,有极大值,即可算出实数的值.

2)(i)由(1)知,,代入中,根据,整理至即恒成立,设新函数,将原问题转化为:恒成立,分的取值范围分类讨论即可得出实数的取值范围.(ii)要证,

转化为证证,整理至,设两个新函数,,分别对两个新函数求导,判断单调性,即可证得成立.

解:(1的定义域为,

,

,解得:,

,解得:,

所以当,为增函数,当,为减函数,

所以时,有极大值,

所以;

2)(i)由(1)知,,

,即恒成立,

所以恒成立,

恒成立,

,则恒成立,

,

,,

原问题转化为:恒成立,

①若,当时,

,

不合题意;

②若,则恒成立,

符合题意

③若,则,

,,令,,

所以当时,为减函数,

时,为增函数,

所以,

,即;

综上.

ii)要证,

只需证,

,即,

只需证,

,,

因为

所以上单调递减,在上单调递增,

所以

因为恒成立,

所以上单调递增,

所以,则,则,

由(2)可知,,所以;

所以,

,得证.

所以 成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知件次品和件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出件次品或者检测出件正品时检测结束.

1)求第一次检测出的是次品且第二次检测出的是正品的概率;

2)已知每检测一件产品需要费用元,设表示直到检测出件次品或者检测出件正品时所需要的检测费用(单位:元),求的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,的顶点,且成等差数列.

1)求的顶点的轨迹方程;

2)直线与顶点的轨迹交于两点,当线段的中点落在直线上时,试问:线段的垂直平分线是否恒过定点?若过定点,求出定点的坐标;若不过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》是我国古代数学名著,它在几何学中的研究比西方早1000多年,在《九章算术》中,将底面为直角三角形,且侧棱垂直于底面的三棱柱称为堑堵(qian du);阳马指底面为矩形,一侧棱垂直于底面的四棱锥,鳖膈(bie nao)指四个面均为直角三角形的四面体.如图在堑堵中,.给出下列四个结论:

①四棱锥为阳马;

②直线与平面所成角为

③当时,异面直线所成的角的余弦值为

④当三棱锥体积最大时,四棱锥的外接球的表面积为.

其中,所有正确结论的序号是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为了解校园安全教育系列活动的成效,对全校学生进行了一次安全意识测试,根据测试成绩评定合格”“不合格两个等级,同时对相应等级进行量化:合格5分,不合格0.现随机抽取部分学生的答卷,统计结果及对应的频率分布直方图如下:

等级

不合格

合格

得分

频数

6

a

24

b

1)由该题中频率分布直方图求测试成绩的平均数和中位数;

2)其他条件不变在评定等级为合格的学生中依次抽取2人进行座谈,每次抽取1人,求在第1次抽取的测试得分低于80分的前提下,第2次抽取的测试得分仍低于80分的概率;

3)用分层抽样的方法,从评定等级为合格不合格的学生中抽取10人进行座谈.现再从这10人中任选4人,记所选4人的量化总分为,求的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两地相距300千米,汽车从甲地匀速行驶到乙地,速度不超过100千米/小时,已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成,可变部分与速度(千米/小时)的平方成正比,比例系数为),固定部分为1000.

1)把全程运输成本(元)表示为速度(千米/小时)的函数,并指出这个函数的定义域;

2)为了使全程运输成本最小,汽车应以多大速度行驶?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为,曲线C的极坐标方程为

(Ⅰ)求直线l和曲线C的直角坐标方程;

(Ⅱ)点M为曲线C上一点,求M到直线l的最小距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:若一个函数存在极大值,且该极大值为负数,则称这个函数为“函数”.

1)判断函数是否为“函数”,并说明理由;

2)若函数是“函数”,求实数的取值范围;

3)已知,求证:当,且时,函数是“函数”.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,.

1)证明:平面

2)若的中点,,求二面角的余弦值.

查看答案和解析>>

同步练习册答案