精英家教网 > 高中数学 > 题目详情
20.函数$y=\frac{x}{{{x^2}+a}}$的图象不可能是(  )
A.B.
C.D.

分析 通过a的取值,判断函数的图象,推出结果即可.

解答 解:当a=0时,函数化为y=$\frac{1}{x}$,函数的图象为:A;
当a=1时,x=0时,y=0,x≠0时,函数化为y=$\frac{1}{x+\frac{1}{x}}$,函数的图象为:B;
当a=-1时,函数化为y=$\frac{x}{{x}^{2}-1}$,当x∈(0,1)时,y′=$\frac{{x}^{2}-1-2{x}^{2}}{({x}^{2}-1)^{2}}$<0,函数是减函数,f(0)=0,可知函数的图象为:D;
故选:C.

点评 本题考查函数的单调性的应用,函数的导数的应用,赋值法的应用,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.在△ABC中,角C=60°,tan$\frac{A}{2}$+tan$\frac{B}{2}$=1,则tan$\frac{A}{2}$•tan$\frac{B}{2}$=1-$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数y=sin(3x+$\frac{π}{4}$)的图象适当变换就可以得到y=cos3x的图象,这种变换可以是(  )
A.向右平移$\frac{π}{4}$个单位长度B.向右平移$\frac{π}{12}$个单位长度
C.向左平移$\frac{π}{4}$个单位长度D.向左平移$\frac{π}{12}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知三棱台ABC-A1B1C1中,平面BB1C1C⊥平面ABC,∠ACB=90°,BB1=CC1=B1C1=2,BC=4,AC=6
(1)求证:BC1⊥平面AA1C1C
(2)点D是B1C1的中点,求二面角A1-BD-B1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,AB为圆O的直径,点E,F在圆O上,AB∥EF,矩形ABCD所在的平面和圆(x-1)2+y2=1所在的平面互相垂直,且AB=2,AD=EF=1,∠BAF=60°.
(1)求证:AF⊥平面CBF;
(2)设FC的中点为M,求三棱锥M-DAF的体积V1与多面体CD-AFEB的体积V2之比的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=lnx+mx(m为常数).
(1)讨论函数f(x)的单调区间;
(2)当$m≤-\frac{{3\sqrt{2}}}{2}$时,设$g(x)=f(x)+\frac{1}{2}{x^2}$的两个极值点x1,x2(x1<x2)恰为h(x)=2lnx-ax-x2的零点,求$y=({x_1}-{x_2})h'(\frac{{{x_1}+{x_2}}}{2})$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知$\frac{π}{2}<α<π$,3sin2α=2cosα,则$sin(α-\frac{9π}{2})$=$\frac{2\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知0<a<b,且a+b=1,则下列不等式中正确的是(  )
A.log2a>0B.2a-b<$\frac{1}{2}$C.log2a+log2b<-2D.2($\frac{a}{b}$+$\frac{b}{a}$)<$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知命题p:?x∈R,2x2+2x+$\frac{1}{2}$<0,命题q:?x0∈R,sinx0-cosx0=$\sqrt{2}$,则下列判断中正确的是(  )
A.p是真命题B.q是假命题C.¬p是假命题D.¬q是假命题

查看答案和解析>>

同步练习册答案