精英家教网 > 高中数学 > 题目详情

【题目】己知椭圆的焦距为,以椭圆C的右顶点A为圆心的圆与直线相交于PQ两点,且

(I)求椭圆C的标准方程和圆A的方程。

(II)不过原点的直线l与椭圆C交于MN两点,已知直线OMlON的斜率成等比数列,记以线段OM,线段ON为直径的圆的面积分别为的值是否为定值?若是,求出此值:若不是,说明理由.

【答案】(Ⅰ);(Ⅱ)答案见解析.

【解析】

分析:(1)的中点,连接,则 ,所以 ,又,所以,从而易得关于a,b的方程组,即可得到所求椭圆方程和圆的方程.

(2)设直线l的方程为y=kx+m,代入椭圆方程,消去y,根据k1、k、k2恰好构成等比数列,求出k,进而表示出,即可得出结论.

详解:(1)如图,设的中点,连接,则

因为,即 ,所以

,所以,所以 ,所以

由已知得,所以

椭圆的方程为

所以,所以,所以

所以圆的方程为

(2)设直线的方程为

,得

所以,由题设知

为定值,该定值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】手机是人们必不可少的工具,极大地方便了人们的生活、工作、学习,现代社会的衣食住行都离不开它.某调查机构调查了某地区各品牌手机的线下销售情况,将数据整理得如下表格:

品牌

其他

销售比

每台利润(元)

100

80

85

1000

70

200

该地区某商场岀售各种品牌手机,以各品牌手机的销售比作为各品牌手机的售出概率.

1)此商场有一个优惠活动,每天抽取一个数字,且),规定若当天卖出的第台手机恰好是当天卖出的第一台手机时,则此手机可以打5.为保证每天该活动的中奖概率小于0.05,求的最小值;(

2)此商场中一个手机专卖店只出售两种品牌的手机,品牌手机的售出概率之比为,若此专卖店一天中卖出3台手机,其中手机台,求的分布列及此专卖店当天所获利润的期望值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列4个结论:

①函数与函数的定义域相同,②函数为常数)图像可由的图像平移得到,③函数是奇函数且是偶函数,④若幂函数是奇函数,则是定义域上的增函数,其中正确的结论的序号是_________(将所有正确结论的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】汽车的燃油效率是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是( )

A. 消耗1升汽油,乙车最多可行驶5千米

B. 以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多

C. 甲车以80千米/小时的速度行驶1小时,消耗10升汽油

D. 某城市机动车最高限速80千米/小时. 相同条件下,在该市用丙车比用乙车更省油

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(I)若函数在区间上是单调递增函数,求实数的取值范围;

(II)若函数有两个极值点,求证

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区为调查新生婴儿健康状况,随机抽取6名8个月龄婴儿称量体重(单位:千克),称量结果分别为6,8,9,9,9.5,10.已知8个月龄婴儿体重超过7.2千克,不超过9.8千克为“标准体重”,否则为“不标准体重”.

(1)根据样本估计总体思想,将频率视为概率,若从该地区全部8个月龄婴儿中任取3名进行称重,则至少有2名婴儿为“标准体重”的概率是多少?

(2)从抽取的6名婴儿中,随机选取4名,设X表示抽到的“标准体重”人数,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

(2)判断函数能否有3个零点?若能,求出的取值范围;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中, 平面 的中点, 在线段上,且满足.

(1)求证: 平面

(2)求二面角的余弦值;

(3)在线段上是否存在点,使得与平面所成角的余弦值是,若存在,求出的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知倾斜角为的直线经过抛物线的焦点,与抛物线相交于两点,且.

(Ⅰ)求抛物线的方程;

(Ⅱ)过点的两条直线分别交抛物线于点,线段的中点分别为.如果直线的倾斜角互余,求证:直线经过一定点.

查看答案和解析>>

同步练习册答案