【题目】已知圆C:
及点P(0,1),过点P的直线与圆交于A、B两点.
(1)若弦长
求直线AB的斜率;
(2)求△ABC面积的最大值,及此时弦长![]()
科目:高中数学 来源: 题型:
【题目】如图,在等腰直角三角形ABC中,∠CAB=90°,AB=2,以AB为直径在△ABC外作半圆O,P为半圆弧AB上的动点,点Q在斜边BC上,若
=
,则
的最小值为_______.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知鸡的产蛋量与鸡舍的温度有关,为了确定下一个时段鸡舍的控制温度,某企业需要了解鸡舍的温度
(单位:℃),对某种鸡的时段产蛋量
(单位:
)和时段投入成本
(单位:万元)的影响,为此,该企业收集了7个鸡舍的时段控制温度
和产蛋量
的数据,对数据初步处理后得到了如图所示的散点图和表中的统计量的值.
![]()
|
|
|
|
|
|
|
17.40 | 82.30 | 3.6 | 140 | 9.7 | 2935.1 | 35.0 |
其中
.
(1)根据散点图判断,
与
哪一个更适宜作为该种鸡的时段产蛋量
关于鸡舍时段控制温度
的回归方程类型?(给判断即可,不必说明理由)
(2)若用
作为回归方程模型,根据表中数据,建立
关于
的回归方程;
(3)已知时段投入成本
与
的关系为
,当时段控制温度为28℃时,鸡的时段产蛋量及时段投入成本的预报值分别是多少?
附:①对于一组具有有线性相关关系的数据
,其回归直线
的斜率和截距的最小二乘估计分别为![]()
②
|
|
|
|
|
0.08 | 0.47 | 2.72 | 20.09 | 1096.63 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】己知p:函数f(x)在R上是增函数,f(m2)<f(m+2)成立;q:方程
1(m∈R)表示双曲线.
(1)若p为真命题,求m的取值范围;
(2)若p∨q为真,p∧q为假,求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在长方体ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.
(Ⅰ)求证:D1E⊥A1D;
(Ⅱ)在棱AB上是否存在点E使得AD1与平面D1EC成的角为
?若存在,求出AE的长,若不存在,说明理由.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于无穷数列
,若正整数
,使得当
时,有
,则称
为“
不减数列”.
(1)设
,
均为正整数,且
,甲:
为“
不减数列”,乙:
为“
不减数列”.试判断命题:“甲是乙的充分条件”的真假,并说明理由;
(2)已知函数
与函数
的图象关于直线
对称,数列
满足
,
,如果
为“
不减数列”,试求
的最小值;
(3)对于(2)中的
,设
,且
.是否存在实数
使得
为“
不减数列”?若存在,求出
的取值范围;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com