精英家教网 > 高中数学 > 题目详情
5.(1)化简f(α)=$\frac{{sin(\frac{π}{2}+α)+sin(-π-α)}}{{3cos(2π-α)+cos(\frac{3π}{2}-α)}}$; 
(2)若tanα=1,求f(α)的值.

分析 (1)由条件利用诱导公式进行化简所给的式子,可得结果.
(2)由条件利用同角三角函数的基本关系进行化简所给的式子,可得结果.

解答 解:(1)化简f(α)=$\frac{{sin(\frac{π}{2}+α)+sin(-π-α)}}{{3cos(2π-α)+cos(\frac{3π}{2}-α)}}$=$\frac{cosα+sinα}{3cosα-sinα}$.
(2)f(α)=$\frac{cosα+sinα}{3cosα-sinα}$=$\frac{1+tanα}{3-tanα}$=$\frac{1+1}{3-1}$=1.

点评 本题主要考查利用诱导公式、同角三角函数的基本关系进行化简求值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.$\lim_{x→4}\frac{{\sqrt{x}-2}}{x-4}$=$\frac{1}{4}$;    $\lim_{x→3}\frac{{{x^2}-5x+6}}{{{x^2}-8x+15}}$=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.过点P(-1,1)作圆C:(x-t)2+(y-t+2)2=1(t∈R)的切线,切点分别为A,B,则$\overrightarrow{PA}•\overrightarrow{PB}$的最小值为$\frac{10}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设数列{an}是等差数列,Sn为其前n项和.若S6=8S3,a3-a5=8,则a8=-26.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在单位圆中,面积为1的扇形所对的弧长为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知$\overrightarrow a=(-3,4),\overrightarrow b=(-2,1)$,则$\overrightarrow a$在$\overrightarrow b$上的投影为(  )
A.-2B.2C.$-2\sqrt{5}$D.$2\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=sinx+cosx,则f'(π)=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.f(a+b)=f(a)f(b)(a,b∈N*),且f(1)=2,则$\frac{f(2)}{f(1)}$+$\frac{f(4)}{f(3)}$+…$\frac{f(2016)}{f(2015)}$+$\frac{{f({2018})}}{{f({2017})}}$=2018.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知等差数列{an}满足:a1+a5=4,则数列$\left\{{{2^{a_n}}}\right\}$的前5项之积为1024.(用数字作答)

查看答案和解析>>

同步练习册答案