精英家教网 > 高中数学 > 题目详情

 

(1)当,解不等式

(2)当时,若,使得不等式成立,求实数的取值范围.

 

【答案】

(I);(II)

【解析】

试题分析:(I)绝对值不等式的解法,易知不等式的等价不等式组解出不等式解集; (II)存在性问题转化为函数最值问题,含绝对值的函数式去绝对值化为分段函数求得最值即可.

试题解析:(I)时原不等式等价于,所以解集为

(II)当时,,令

由图像知:当时,取得最小值,由题意知:,所以实数的取值范围为.

考点:1、绝对值不等式的解法; 2、函数最值问题.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设集合A={x|x<-2或x>3},关于x的不等式x2-ax-2a2≥0的解集为B
(1)当a<0时,求集合B;
(2)设p:x∈A,q:x∈B,且¬p是¬q的必要不充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
-2x+a
2x+1+b
(a>0,b>0)

(1)当a=b=2时,证明:函数f(x)不是奇函数;
(2)设函数f(x)是奇函数,求a与b的值;
(3)在(2)条件下,判断并证明函数f(x)的单调性,并求不等式f(x)>-
1
6
的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•青岛一模)定义区间(a,b),[a,b),(a,b],[a,b]的长度均为d=b-a,多个区间并集的长度为各区间长度之和,例如,(1,2)∪[3,5)的长度d=(2-1)+(5-3)=3.用[x]表示不超过x的最大整数,记{x}=x-[x],其中x∈R.设f(x)=[x]{x},g(x)=x-1,当0≤x≤k时,不等式f(x)<g(x)解集区间的长度为5,则k的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2-mlnx,h(x)=x2-x+a.
(1)当m=2时,若方程f(x)-h(x)=0在[1,3]上恰好有两个不同的实数解,求实数a的取值范围;
(2)是否存在实数m,使函数f(x)和函数h(x)在公共定义域上具有相同的单调区间?若存在,求出m的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:

①若函数y=(-1≤x≤a)的反函数是它本身,则a=0;

②当a>1时,函数f(x)=ax+loga(x十1)在[0,1]上的最大值与最小值之和不可能为a;

③设f(x)是定义在R上的连续函数,若不等式f(x)<0的解集为(1,2),则不等式f(x—1)<0的解集为(2,3).

填出你认为正确的所有命题序号_____________.

查看答案和解析>>

同步练习册答案